Senior Design I

- EECE 401
 - CRN 86517
 - 3 credit hours
 - W 1:10 4 pm
 - LKD1002 →3121
- Instructor
 - Dr. Charles Kim
 - -(202)806-4821
 - ckim@howard.edu
 - Office Hours
 - M 1:30 3:00pm
 - TR 3:00 4:30pm
 - F 1:30 3:00pm (Scheduled appointment only)
- TA
 - TBD
- Web ---Syllabus, Notes, etc

Senior Design

- Is
 - Culmination of EE/CpE Education, Training, etc.
 - Design experiences that require adequate consideration of
 - Knowledge
 - · standards, and
 - constraints
 - related to the electrical/computer engineering discipline.
 - Process to final product (through Senior Design II)
- Is NOT
 - Further expansion of a class project
 - Final product only

Course Objectives Topics

Objectives

- Learn and use design process to meet needs
- Becoming to be aware of Technology Impact to Society
- Becoming an effective team member
- Becoming an effective communicator
- Enjoy Design Experiences
- Topics of the course
 - Engineering Design Processes
 - Teamwork
 - Communication
 - Professional Skills

"Design" – ABET definition

ABET

- "The process of devising a system, component, or process to meet desired needs."
- "A decision-making process (often iterative), in which the basic sciences, mathematics and engineering are applied to convert resources optimally to meet the stated needs."
- "The experiences that require adequate consideration of knowledge, standards, and constraints related to the electrical/computer engineering discipline."

"Design" – Industry definition

Industry

– (1)"Determine that a <u>need</u> exists with a customer for specific <u>goods or services</u> and how much that customer is able and willing to <u>pay</u> for it. (2)Then determine if the product or service is <u>compatible</u> with the competencies of the company and if it can be manufactured at a <u>cost</u> that is less than the customer will pay. (3)If so, proceed by designing to match the <u>company's ability</u> to manufacture, rather than basing the design on state-of-the-art technologies. (4)Finally, prior to full implementation prepare a <u>pilot demonstration"</u>

Main Text and Resource

Becoming a Technical Professional

- Becoming a Technical Professional
 - by Vern Johnson and Reid Bailey
 - published by Kendal/Hunt Publishing Co.
 - 3rd Edition
 - ISBN 13:978-0-7575-2765-4
 - Written for first-year engineering students
 - Process/Idea is same for seniors with actual application/implementation of the process/idea.
 - I love this book. Over the summer, amid busy schedule, I read them all.

Course Grading and Expectation

- Expectation
 - Attendance
 - Active Participation
 - Weekly Activities
 - Assignments
 - Actively seeking solutions
 - Active interaction with instructor and advisor
 - Everything counts
 - Professional manner

Grading

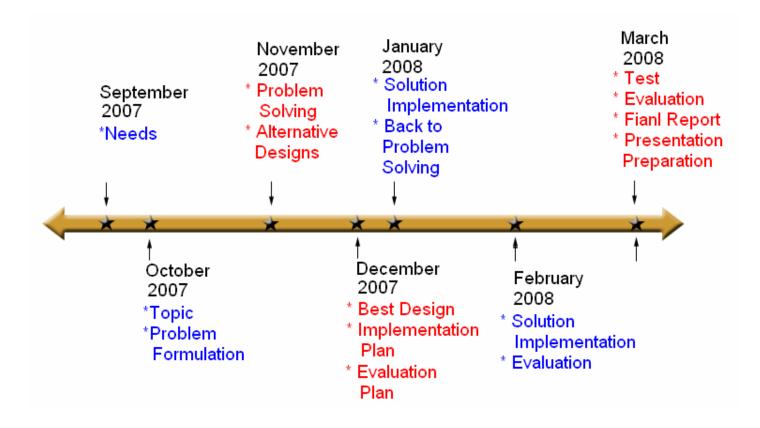
- Individual Scores
 - Attendance (10%): only on-time arrival counts
 - Participation in public speech or professional communication (Extra 5%)

Group Scores

- Weekly Class Activities (30%)
- Assignments (30%): Needs, Current Art, and Solutions.
- Process of Project (30%): Submission and Presentation
- Peer Evaluation Rate Applied to the group score distribution to each team member

Milestone

Understanding Design Processes: September


Project Topic Selection: September

Team Formation: September

Problem Formulation: October

Problem Solving and Top Design Selection: November

Design Implementation: Next Semester

Engineering Design – Topics and Objectives

Topics

- Engineering DesignOverview
- Problem Formulation
- Problem Solving
- SolutionImplementation
- The Art and Science of Creativity
- Project Management

Objectives

- Understanding an engineering design process
- Understanding the 3
 phases of design
 and how design is an adaptive, systematic process
- Applying a design process to meet a set of needs
- Design it!

Engineering Design-Overview

Problem Formulation

- Recognition of a set of needs
- Information gathering about the needs
- Determine the requirements of the project

Problem Solving

- Investigates the available alternatives to meet the requirements Current State of the Art
- Generates and Analyzes and Specifies alternatives with the requirements
- Makes Decision on which alternatives will be implemented
- Selects the Top Design

Solution Implementation

- Creates an <u>implementation</u> and test **plan**
- Follows the plan to **build** the design
- Evaluates against the requirements from problem formulation

Characteristics of Design

- Process cycles through the 3 phases under constraints, regulations, rules, etc
 - Problem Formulation
 - Problem Solving
 - Solution Implementation
- Design is systematic, not trial-and-error
- Design is adaptive, not a recipe
- Design is a process, not an event or product

Design is a Systematic/Adaptive Process

- Iteration back to earlier phases
- Refinements of the requirements
- Reconsideration of earlier activities
- Multiple phases simultaneously
- Engineering and Scientific Knowledge
- Rigorous Testing
- Execution of Planned Activities
- Regulation. Codes, Rules, Standards, etc

The cost of "Assumptions" and No-Compliance

 Difference between two photos of the same building is about \$20M.

Class Activity

- Wireless Guitar
 Amplification System
- Focus on Problem
 Formulation
 - The needs (by today)
 - Requirements (by today)
 - The Current State of Art (by next week)