EECE 499/693: Computers and Safety Critical Systems

4 Design of Fail-Safe Computer System

B. Dual Redundant Architecture

Instructor: Dr. Charles Kim

Electrical and Computer Engineering Howard University

www.mwftr.com/CS2.html

Simplex Architecture - Review

- <u>A simplex system</u>: "a system which <u>does not employ redundancy</u>" whether it be a basic system or a fail-safe system
- We have discussed how this <u>simplex system can behave fail-safe</u> under fault and failure events in <u>each of the component</u> of the example system
- Sensor/Actuator failure detection by Simplex Architecture
 - Single sensor failure detection by estimated correct sensor value
 - **Problem:** Estimations are too coarse of take too long to compute
 - **Problem**: Estimations may not be known in advance
- Computer Hardware Fault/Failure detection by Simplex
 Architecture
 - Watchdog Timer
 - S/W based test for CPU, Memory, and I/O devices
 - Problem: S/W based tests may take too long over a large number of frames so that failures may surface before the faults may be diagnosed and found
 - Problem: Some Off-the-shelf system may not allow to incorporate s/wbased diagnostics

Dual Redundancy

- When failure of a simplex component cannot be reliably detected, it is necessary to adopt pure <u>brute force</u> - Dual Redundancy
- Dual Redundancy: <u>Two identical components are employed and run</u> in <u>parallel</u>
- Operation (Under the assumption of single failure)
 - Matched outputs: no failure
 - Unmatched outputs: a failure

- Background:
 - Uncertainties and complexities of detecting simplex sensor failures
- Simple approach:
 - Duplication of the sensors
 - **One**: monitoring and control
 - **Second**: A reference that provides the known value for use in failure detection
 - Both are read by a single computer
 - They are compared

	Dual R	edunc	lancy	– Sen	sors	
NASA Technical Reports Server (NTRS) Providing Access to NASA's Technology, Research, and Science						
BASIC SEARCH	ADVANCED SEARCH	ABOUT NTRS	NTRS NEWS	OAI HARVEST	TUTORIALS	SEARCH TIPS
Record Detai	ils					
Return to Search Results		Previous Record Next Record				> Printable Viev
Text Size 🕶 🗖			Record 1 of	1		Send 🕂 Shar
Dual redundant se	ensor FDI techniques a	applied to the N	A SA F8C DFBW	aircraft. [Failure	Detection and I	dentification
Author and Affiliation:	Desai, M. N.	Desai, M. N. (Draper (Charles Stark) Lab., Inc., Cambridge, MA, United States);				
	Deckert, J. C.	(Draper (Cl	harles Stark) Lab., II	nc., Cambridge, MA, L	Inited States):	
	Deyst, J. J.		ala	ridge, MA,		
	Willsky, A. S.	(C		ridge, MA,		
	Chow, E. Y.			ambridge,	· · ·	
Abstract:	An onboard failure	detecti		dual redun	1	
	fly-by-wire (DFBW	/) aircraf		r of senso		
	direct redundancy	trigger		he outputs	Q. 4	
	the failed sensor i	s accom	A A	y that exis		• • • • •
	relationships amo	ng the v		struments		
	failures, common	to both i	()	shed by u	AMMERICAN DELIMINE	000E WS
	analytic redundan	of the measurement of a variable using the suspect instrument with another				
	obtained using other instrument types					
Publication Date	Jan 01 1976	ter motiument types				
ablication Date.	oan 01, 1070					

Simplified schematic diagram for the nuclear reactor.

Infineon Introduces Dual-Sensor Package Devices for Safety Critical Automotive Applications; Redundant Sensor Architecture Supports ASIL D Systems and Helps Shrink System Footprint and Reduce Cost

Oct 27, 2014 | Technology Media

ASIL (Automotive Safety Integrity Level): Risk classification scheme defined by ISO 26262 – Functional Safety for Road Vehicles standard.

- 4 grades: ASIL-A (lowest), -B, -C, and –D (highest)
- ASIL D: Highest class of initial hazard & most stringent safety measures applied to avoid unreasonable residual risk.

Dual Redundancy – Sensors: Time Skew

• Problem of **Skew in Time** in the Dual Sensor Architecture

- Causes of the Skew in Time in the sensor outputs
 - Two sensors are placed in the physically different places
 - Two sensors are constructed differently
 - Two sensors are calibrated at different times
- Solution for the Skew in Time
 - Handling by software in consideration of the timing of comparison

• Problem of Analog Value Difference in two sensors

- Causes of the different sensor outputs
 - Two sensors are constructed differently
 - Two sensors are calibrated at different times
- Solution for the Skew in Time
 - <u>Handling by software in consideration of the threshold in</u> determining the values

Single Points of Failure in Dual Sensors

- Dual Redundant Sensors & Simplex Computer (& Simplex Power supply)
- Simplex component failure may brings in matching but incorrect results in the dual sensors
- Example: Failure in the Simplex Interconnect

 <u>Point</u>: Failures in the simplex elements may compromise any safety margin gained in using dual sensors

Dual Redundancy – Computer Hardware

- Adoption of dual computer redundancy
 - Hardware single points of failure is unacceptable
 - Failure detection speed is important
- Operation
 - Each computer functions identically
 - No failure: two produce matching outputs
 - Failure: Outputs do not match
- Dual Architecture
 - Number of ways

Dual Redundancy – Computer Hardware

Dual Computer Architecture

- Computer hardware, power supply, and interconnects (and sensors) are all <u>duplicated</u>
- Each of the groups is referred to as a channel

Dual Architecture

Assumption:

- 1. Hardware in the channels is <u>independent</u> → A hardware failure in a channel has np effect on the correct performance of other channels
- 2. The communication path is <u>electrically isolated</u> from the computers → a hardware failure (such as a short circuit) in the connecting path will not propagate to computers
- "Electrically Isolated": meaning?
 - Line connecting the two computers is transformer or optoelectronically isolated

Dual Architecture --- Software Composition

- Software Functions
 - First function: Normal control and monitoring with sensor data reading, effector value computation, and effector value out-putting
 - Second function: hardware failure detection for sensors and computer → Our focus
- Software composition for hardware failure detection
 - 1. Computer_A reads sensor_A
 - 2. Computer_B reads sensor_B
 - 3. Computer-A sends its sensor value to Computer_B
 - 4. Computer_B sends it sensor value to Computer_A
 - 5. Both Computers compare the two values
 - 6. Declare Normal or Failure

Dual Architecture ---- Frame Synchronization

- Frames of two computers are each controlled by **internal clock**
- Two internal clock may have different rate → Frames of two computers drift with respect to one another

- Fixing the frame drift problem
 - Computer B's clock as an independent check on Computer A's frame period

Dual Architecture --- Frame Synchronization

- 1. Wire dedicated discretes from A to B and B to A
- 2. Computer B starts to continuously monitor the discrete channel
- 3. Computer A software generates a pulse and sends to the discrete channel
- 4. When Computer B sees the positive transition of the signal, it begins its frame including generation of a frame pulse similar to that of Computer A. As the end of the frame, Computer B will have completed its computations and returns to sampling of Computer A' s discrete signal so as to detect and synchronize on the next positive transition.
- 5. Computer A samples Computer B's frame pulse to verify that it matches its own.

Dual Architecture --- Software

- Simplex Software
 - Use of identical software in dual hardware channels sets up the possibility that a single software fault can effect both channels, eroding the safety benefit gained by the dual redundant hardware
- Measures and cures
 - Dual independent watchdog timer
 - Software failure detection
 - Dissimilar software
 - **Diversity** functional diversity and design diversity
- Defense-in-Depth and Diversity (D3)

Defense in Depth

- Military Strategy
 - Front Line
 - Forward Defense
 - Defense-in-depth
- Industrial Use
 - Computing
 - Security
 - Nuclear Power
 - Aircraft

Defense-in-Depth as Military Strategy

- Forward Defense --- Roman army
 - Garrison posts in Barbarian territory
 - Battle Fields out of Roman territory
 - Expensive
- Front Line
 - Everything at the border line
 - Win or Lose
 - Maginot Line
- Defense-in-Depth
 - Thin Presence in the border line
 - Delay the advance of enemy
 - Strong defense line behind
 - -20 Modestly expensive

Defense-in-Depth in Information Assurance

- Information assurance (IA) concept
 - conceived by the National Security Agency (NSA) as a comprehensive approach to information and electronic security
 - multiple layers of security defense are placed throughout an information technology (IT) system
 - provides redundancy in the event a security defense fails or a vulnerability is exploited

• Examples

- Physical security (e.g. deadbolt locks)
- Authentication and password security
- Hashing passwords
- Anti virus software
- Firewalls (hardware or software)
- IDS (intrusion detection systems)
- VPN (virtual private networks)
- Logging and auditing
- Biometrics
- Timed access control
- Exclusive Software/hardware

Defense-in-Depth in Safety-Critical Industry

- Aircraft:
 - emphasizes redundancy a system that keeps working when a component fails - over attempts to design components that will not fail in the first place.
 - an aircraft with four engines will be less likely to suffer total engine failure than a single-engine aircraft no matter how much effort goes into making the single engine reliable.
- Nuclear engineering and nuclear safety:
 - practice of having multiple, redundant, and independent layers of safety systems for the single, critical point of failure – reactor safety system.
 - Reactor Safety System: reduce the risk that a single failure of a critical system could cause a core meltdown or a catastrophic failure of reactor containment.

Defense-in-Depth and Redundancy

- Safety System must reliably satisfy the functional requirements
- Single-failure proof (no single failure is to prevent safety system actuation if needed, nor shall a single failure cause a spurious activation)
- How to achieve this goal?
 - By Redundancy
 - Achieve the functional goals in the presence of component failures
 - Active redundancy and Standby redundancy

Redundancy

- <u>Active Redundancy</u>
 - Multiple identical components **operating in parallel**
 - The multiple outputs are compared or selected in some way to determine which outputs will be used
 - (ex) Boolean Logic; 2-out-of-3
- Standby (or backup) Redundancy
 - Make spares available to replace failed components
 - (ex)Backup generator
- Component duplication Same function and identical component
 - Protection against independent failures caused by physical degradation (wear-out)

Vulnerability of Redundancy

Redundancy in the Cloud.

Common Cause Failure – Weakness of Redundancy

- The benefit of component duplication can be defeated by <u>common-cause failure (CCF) or</u> <u>common-mode failures (CMF)</u>
 - CCF: multiple components fail by the same cause
 - CMF: multiple components fail the same way
- CCF and CMF occur
 - because the assumption of independence of the failures of the components is invalid
 - Common external or internal influences
 - Design error

Protection against CMF - Diversity

- Design Diversity:
 - components with <u>different internal design</u> (but performing the same function) are used.
 - (ex) Multiple versions of software written from the equivalent requirements specifications same function by different algorithms →(ex) two different ways of determining of two number are the same
 - (ex) Multiple different components differently achieving the design requirement

DIVERSITY

- Functional Diversity
 - Components made by different requirements perform different functions at the component level while satisfying the upper level system requirements
 - <u>Different Principle of operation or physical principles</u> to satisfy the same or different system-level requirements
 - (ex) one program checks if two numbers are equal; another program selects the larger of 2 numbers
 - (ex) One uses <u>control rods</u> to trip a reactor (based on the ratio of reactor power and flow); another uses <u>Boron concentration</u> to trip a reactor (based on coolant temperature)
- Most important issue: Independence

Diversity Everywhere

• GPRS: General Packet Radio Service mobile data service on 2G and 3G Cellular Communication System

NRC D3 Strategy Examples

34

D3 Guidelines in Nuclear Industry

- NUREG/CR-6303, "Method for Performing Diversity and Defense-in-Depth Analyses of Reactor Protection Systems," December 1994.
- NUREG-0800, Standard Review Plan, BTP 7-19, "Guidance for Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based Instrumentation and Control Systems," March 2007.
- U.S. Code of Federal Regulations, Title 10, Energy, Part 50, Section 62, "Requirements for Reduction of Risk from Anticipated Transient Without Scram (ATWS) Events for Light-Water-Cooled Nuclear Power Plants."
- Generic Letter 85-06, "Quality Assurance Guidance for ATWS Equipment That Is Not Safety-Related," April 16, 1985 (Accession No. ML031140390).
- IEEE Std 7-4.3.2-2003, "IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations,"
- NUREG/CR-6463, "Review Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems", June 1996

D3 Guidelines in Other Industries

- FAA: RTCA (Radio Technical Commission for Aeronautics) DO-178B Software Considerations in Airborne Systems and Equipment Certification
- DOD: MIL-STD-882C System Safety
 Program Requirements
- FDA: Review Guidance for Computer Controlled Medical Devices Undergoing 510(k) Review