**EECE 499/693: Computers and Safety Critical Systems** 

### **3 How Computer Systems Fail**

Instructor: Dr. Charles Kim

Electrical and Computer Engineering Howard University

www.mwftr.com/CS2.html

## Background

- Basic computer system (without safety features) with H/W, S/W, and Operator actions
- Need to understand <u>how</u> computer systems fails in order for design modification to deal with potential failures which may cause mishaps.
- Main subject: Computer Failure Causes



### Computer System Failures – Failure Causes

- Recall "<u>Failure</u>" failing to perform a duty or expected action.
- Computer System Failure Causes
  - ("Random") Hardware faults
    - Inherent defects in manufactured hardware items
  - Software faults
    - Inherent defects residing in the software programming as errors, anomalies, and discrepancies.
  - Systematic faults
    - Personnel error
    - Environmental conditions
    - Design Faults
      - Design inadequacies
      - Procedural deficiencies

#### **Component Failure Modes and Effects**

- Dealing with system failures on a component-bycomponent basis <u>as opposed to dealing with the</u> effects of specific failure causes
- Why?
  - Computer in a system can "see" the real-time actions of its components
  - Computer in a system cannot "see" readily the causes
- Our approach in the chapter:
  - Discussion of computer systems on a component-bycomponent basis
  - Each component is examined in terms of its potential <u>failure</u> mode ("the <u>way a component fails</u>")
  - Looking at a various ways that component failure modes can be determined

#### Component Failure Mode and Effect Analysis – Sneak Preview

#### • NSTX Failure Modes & Effects Analysis / NSTX-FMEA-61-4 / 8/17/00 /

| WBS Element: | 3.2 Cooling Water System                                                                                                                                                                                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component:   | Pumps & Automatic Valves                                                                                                                                                                                                                  |
| Function:    | The Low Pressure Pump provides cooling water flow, the High Pressure Pump (and redundant back-up unit) boosts the pressure for the OH coil. The Automatic Supply and Return Valves control the overall supply of cooling water to the NTC |

| Failure Mode                  | Effect                                                  | Detection                                                                                    | Recovery                         |
|-------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|
| Low Pressure Pump<br>failure  | Loss of coolant flow to NTC                             | Flow switch measurements,<br>de-energize PAUX relay to<br>power supply system<br>permissives | Shutdown and repair or replace   |
| High Pressure Pump<br>failure | Loss of OH pressure, reduction of OH coolant flow       | Flow switch measurements,<br>de-energize PAUX relay to<br>power supply system<br>permissives | Switch to back-up unit           |
| Automatic Supply Valve        | Delivery of coolant to NTC precluded,                   | PLC logic                                                                                    | Troubleshoot and repair or       |
| failure to open               | PLC logic prevents starting of pumps                    |                                                                                              | shutdown and replace             |
| Automatic Supply Valve        | Loss of ability to isolate NTC water                    | PLC logic                                                                                    | Close manually, troubleshoot and |
| failure to close              | circuits from pump room, PLC logic                      |                                                                                              | repair or shutdown and replace   |
|                               | prevents closing of Automatic Return<br>Valve           |                                                                                              |                                  |
| Automatic Return Valve        | Delivery of coolant to NTC precluded,                   | PLC logic                                                                                    | Troubleshoot and repair or       |
| failure to open               | PLC logic prevents opening of<br>Automatic Supply Valve |                                                                                              | shutdown and replace             |
| Automatic Return Valve        | Loss of ability to isolate NTC water                    | PLC logic                                                                                    | Close manually, troubleshoot and |
| failure to close              | circuits from pump room                                 |                                                                                              | repair or shutdown and replace   |

#### **Component Failure Mode Determination**

- Sources and means of determining component failure modes- Vendor Data, Facility Records, Published Databases, Technical Literatures, Analysis, Hypothetical Worst-Case Failure Modes
- 1 Vendor Data
  - Based on actual field history
  - Not usually available to the system designer companies are reluctant to share and publicize.
- 2 Facility Records
  - Maintenance and operating records on past use and failures
  - Incomplete and partial failure modes only

# **Examples of facility record**

| Arra         | nge By: Date                                                   | Newest on top                 | - |
|--------------|----------------------------------------------------------------|-------------------------------|---|
| 4            | Two Weeks Ago                                                  |                               | = |
|              | Enterprise Technology Service<br>Wireless Network Connectivi   | tes 9/15/20 □♥<br>ty Problems |   |
| 4            | Older                                                          |                               |   |
| $\times$     | Enterprise Technology Service                                  | ces 8/30/20                   | - |
| $\bowtie$    | Enterprise Technology Servic<br>Connectivity Problems Resolv   | es 7/21/20 🛛 🕅                |   |
|              | Enterprise Technology Service<br>PeopleSoft Connectivity Prob  | es 7/21/2014 □ 🖗<br>Iems      |   |
| $\bowtie$    | Enterprise Technology Servic<br>Banner and Bison Web Main      | es 7/10/20                    |   |
|              | Enterprise Technology Service<br>Banner & Bison Web System     | es 6/27/2014 □ 🖗<br>Maintena  |   |
| $\mathbf{X}$ | Enterprise Technology Servic<br>TouchNet Upgrade               | es 6/12/20<br>!               |   |
| $\mathbf{X}$ | Enterprise Technology Servic<br>Reminder: PeopleSoft, Banne    | es 5/30/20                    |   |
|              | Enterprise Technology Service<br>Technical Issues with Bison V | es 5/27/2014 □ 🖗<br>Veb       |   |
|              | Enterprise Technology Servic<br>PeopleSoft, Banner and Biso    | n Web Syst                    |   |
|              | Enterprise Technology Servic<br>Banner & Bison Web System      | es 5/23/20                    |   |
| $\times$     | Enterprise Technology Servic                                   | es 5/22/20 🗆 🏷                | - |

| Staff<br>Name<br>and Date | Problem and<br>description<br>(including any error<br>messages) | Time<br>taken to<br>fix<br>problem | Attempted<br>solution and<br>suggestions for<br>next step                                                                                                                   | Person<br>who fixed<br>it | Contact<br>information                 |
|---------------------------|-----------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|
| Ian /<br>31/7/03          | Mouse stopped<br>working. No error<br>messages                  | 30 mins                            | Checked mouse<br>device settings in<br>control panel /<br>system. No<br>properties found.<br>Turned off PC and<br>Swapped over<br>mouse. Mouse<br>started working<br>again. | Jo                        | Central<br>Services IT<br>co-ordinator |
|                           |                                                                 |                                    |                                                                                                                                                                             |                           |                                        |

#### Component Failure Mode Determination – conti.

#### • 3 Published Databases

- Cover failure modes for many hardware components in computer systems
- FMD-91 Failure Mode/Mechanism Distributions, Reliability Analysis Center, Rome, NY (1991)
- IEEE Std-500-1984 IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component, and Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations (1984) --- Currently Withdrawn



Failure Mode/Mechanism Distributions

1991

FMD-91





RIAC is a DoD Information Analysis Center sponsored by the Defense Technical Information Center

#### IEEE STANDARD

500-1984 - IEEE Guide To The Collection And Presentation Of Electrical, Electronic, Sensing Component, And Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations

#### FMD-91 at a glance

13. ABSTRACT (Maximum 200 words)

The intent of this document is to present failure mode distributions to be used in support of reliability analysis such as FMEAs and FMECAs when used in conjunction with accepted reliability prediction techniques such as MIL-HDBK-217 along with RACs Nonelectronic Parts Reliability Data (NPRD). The intent of these distributions is that they form a basis for a standard set of distributions to be used in the reliability engineering industry. The scope of this publication covers all electronic, mechanical and electromechanical parts or assemblies on which RAC has collected failure data.

Failure mode, effects and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA).

<u>Part failure rate  $(\lambda p)$ </u> - The part failure rate  $(\lambda p)$  from the appropriate reliability prediction or failure rate data source such as <u>MIL-HDBK-217</u> or <u>NPRD-91</u> shall be listed.

<u>Failure Effect Probability ( $\beta$ )</u>. The  $\beta$  values are the conditional probability that the failure effect will result in the identified criticality classification, given that the failure mode occurs.

| Device Trees |                              | Failure Mode    |
|--------------|------------------------------|-----------------|
| Device Type  | Fallure Mode                 | Probability (α) |
| Alarm        | False Indication             | .48             |
|              | Failure to Operate on Demand | .29             |
|              | Spurious Operation           | .18             |
|              | Degraded Alarm               | .05             |
| Antenna      | No Transmission              | .54             |
|              | Signal Leakage               | .21             |
|              | Spurious Transmission        | .25             |

# Military Handbook (MIL-HDBK-217)

#### MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT



NOT MEASUREMENT SENSITIVE MIL-HDBK-217F <u>2 DECEMBER 1991</u> SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

RADC-TR-90-72 Final Technical Report May 1990

- Reliability Prediction of Electronic Equipment
- Failure Rate Prediction Models for
  - Microcircuits (Sec. 5)
  - Discrete Semiconductors (Sec 6) Diode, transistors, etc
  - Resistors (Sec. 9)
  - Capacitors (Sec. 10)
  - Inductive Devices (Sec. 11)
  - Rotating Devices Motors (Sec. 12)
  - Relays (Sec. 13)
  - Switches (Sec. 14)
  - Connectors (Sec. 15)
  - And more !!!

### Part Failure Rate Models --- Preview

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours

 $\lambda_p = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$  Failures/10<sup>6</sup> Hours



 $\pi_{\rm F}$  : Environmental Factor

 $\pi_{\mathbf{Q}}$  : Quality Factor

 $\pi_1$ : Learning Factor (Years in Production)

Microprocessor Die Complexity Failure Rate - C4

| No. Bits | Bipolar<br><sup>C</sup> 1 | MOS<br>C1 |
|----------|---------------------------|-----------|
| Up to 8  | .060                      | .14       |
| Up to 16 | .12                       | .28       |
| Up to 32 | .24                       | .56       |

|                       | *рт      |             |  |  |  |  |
|-----------------------|----------|-------------|--|--|--|--|
| Package Type          | Hermetic | Nonhermetic |  |  |  |  |
| DIP<br>Pin Grid Array | 1.0      | 1.3         |  |  |  |  |
| Chip Carrier          | 4.7      | 6.1         |  |  |  |  |

MIL-HDBK-217F

We'll be

back

soon.

#### Failure Rate Determination Example – Sneak Preview

- Example 1: CMOS Digital Gate Array
- Device: CMOS Digital Timing Chip (4046) for airborne inhabited cargo application
  - 1000 transistors
  - Case Temp 48 C and 75mW power dissipation
  - Normal manufacturing
  - Electrical testing, seal testing, and external visual inspection
  - B-level burn-in followed by electrical testing
  - Complied to MIL-STD-883 screening method
  - 24-pin DIP with a glass seal
  - Has been manufactured for several years
- Solution
  - Section 5.1
  - C1 = 0.020

MOS Digital and Linear Gate/Logic Array

| Digital                                                                                               |                                            |                          |                | Linear                        |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------|-------------------------------|
| No. Gates                                                                                             | C <sub>1</sub>                             | No.                      | Trar           | nsistors                      |
| 1 to 100<br>101 to 1.000<br>1.001 to 3.000<br>3.001 to 10.000<br>10.001 to 30.000<br>30.001 to 60.000 | .010<br>.020<br>.040<br>.080<br>.16<br>.29 | 1<br>101<br>301<br>1,001 | to<br>to<br>to | 100<br>300<br>1,000<br>10,000 |

#### $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$ Failures/10<sup>6</sup> Hours

Q1:

I'm having trouble counting the number of transistor in the gate designs that I have made.

NAND, NOR, NOT: transistors = 2 \* # of inputs AND, OR, transistors = 2 \* # of inputs + 2

www.ece.gatech.edu/academic/courses/ece2030/faq/gates/main.html

We'll be back soon.

P 5-3

#### Failure Rate Determination – Background Knowledge Required



#### SECTION I - CLASS DEFINITION

A. This class provides for manufacturing a semiconductor containing a solid-state device by a combina

#### NPRD-9 11111 NONELECTRONIC PARTS **Reliability Analysis Center RELIABILITY DATA** 1991 A DoD Information Analysis Center 13. ABSTRACT (Maximum 200 words) >> This document provides failure rate data for a wide variety of component types including mechanical, electomechanical, and

discrete electronic parts and assemblies. It also provides summary failures rates for numerous part categories by quality level and environment.

Data represents a compilation of field experience in military, commercial, and industrial applications, and concentrates on items not covered by MIL-HDBK-217, "Reliability Prediction of Electronic Equipment." Data tables include part descriptions, quality levels, application environments, point estimates of failure rate, data sources, number of failures, total operating hours, and detailed part characteristics. 14 1 1 .

| NPRD-91             |             |            |                |   |                      | Part            | 2-1                     |                |
|---------------------|-------------|------------|----------------|---|----------------------|-----------------|-------------------------|----------------|
| Part<br>Description | Qual<br>Lev | App<br>Env | Data<br>Source |   | Fail Per<br>E6 Hours | Total<br>Failed | Operating<br>Hours (E6) | Detail<br>Page |
| Accelerometer       |             | _          |                |   | 49.2154              |                 |                         |                |
|                     | Com         | AI         |                |   | 89.0991              |                 |                         |                |
|                     |             |            | NPRD-082       |   | 534.1592             | 86              | 0.1610                  | 3-1            |
|                     |             |            | NPRD-096       |   | 14.8620              | 7               | 0.4710                  | 3-1            |
|                     | Mil         |            |                |   | 42.5082              |                 |                         |                |
|                     |             | AI         |                |   | 168.5923             |                 |                         |                |
|                     |             |            | 16953-000      |   | 111.1108             | 65              | 0.5850                  | 3-1            |
|                     |             |            | 25199-000      |   | 280.5080             | 2094            | 7,4650                  | 3-1            |
|                     |             |            | NPRD-106       |   | 153.7490             | 367             | 2.3870                  | 3-1            |
|                     |             | DOR        | 13253-000      |   | 0.4342               | 143             | 329.3300                | 3-1            |
|                     |             | GM         |                |   | 49.2490              |                 |                         |                |
|                     |             |            | 25199-000      |   | 277.8615             | 182             | 0.6550                  | 3-1            |
|                     |             |            | NPRD-067       |   | 12.1951              | 2               | 0.1640                  | 3-1            |
|                     |             |            | NPRD-084       |   | 35.6761              | 301             | 8.4370                  | 3-1            |
|                     |             |            | NPRD-095       | < | 27.0270              | 0               | 0.0370                  | 3-1            |
|                     |             | SF         | 10219-034      | < | 8.9286               | 0               | 0.1120                  | 3-1            |
|                     | Unk         |            |                |   | 46.6686              |                 |                         |                |
|                     |             | А          | 14182-001      |   | 236.6061             | -               |                         | 3-1            |
|                     |             | G          | 14182-001      |   | 52.5229              | -               |                         | 3-1            |
|                     |             | SF         | 14182-001      |   | 8.1790               | -               |                         | 3-1            |

## IEEE std 500-1984: example

ANSI/IEEE Std 500-1984
 P&V

(Composite of 11.2.a, 11.2.b and 11.2.X)

IEEE Standard Reliability
 Data for Pumps and Drivers,
 Valve Actuators, and Valves

#### IEEE STANDARD

500-1984 - IEEE Guide To The Collection And Presentation Of Electrical, Electronic, Sensing Component, And Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations

| CHAPTER: 11                   | Driven<br>Equipment | SECTION | N: 1)      | l.2 Valve | es    |        |            | SUBSEC | TION: |               |                                     |                        |     | Std E<br>P&V |
|-------------------------------|---------------------|---------|------------|-----------|-------|--------|------------|--------|-------|---------------|-------------------------------------|------------------------|-----|--------------|
| ITEN OR EQUIPM<br>DESCRIPTION | ENT                 |         |            |           |       |        |            |        |       |               |                                     |                        |     | 500-198      |
| F                             | AILURE MODE         |         |            | ŀ         | AILUR | E RATE |            |        |       | (†) REP       | (*) OUT OF :<br>AIR TIME O<br>(HOUE | SERVICE<br>R (§) RESTO | RE  | 4            |
|                               |                     | F       | AILURES/10 | 6 HOURS   |       | F      | AILURES/10 | CYCLES |       |               | (100)                               | 13)                    |     |              |
|                               |                     | LOW     | REC        | HIGH      | REF   | LOW    | REC        | HIGH   | REF   | LOW           | REC                                 | HIGH                   | REF |              |
| ALL MODES                     |                     | 0.03    | 1.39       | 3.23E3    |       |        | 732        |        |       | 0 *<br>0.40 † | 117.0<br>0.98                       | 8.14E3<br>476          |     |              |
|                               |                     | I       | I          | 1         | 1     | I      | I          | 1      |       |               | I                                   |                        | I   |              |

(REC) recommended values

# Published Data – on Webpage

#### Lecture 4: Computer Systems

Assignment #3: Read Chapter 1 The Origins of Accidents of Scott Sagan's book, The Limitation of Safety (Prin the subject with one's own critic view. The first paragraph should comprehensively summarize the entire report. presentation file by Oct 20 via email. Selected good works will be invited to present in the class of Oct 21.



### Component Failure Mode Determination – conti.

#### • 4 Technical Literatures

- Conference and journal articles on software engineering and software reliability
- How faults are introduced into software programmer mistakes and oversights
- 5 Analysis
  - Engineering analysis for failure modes of some parts whose failure mode data are not available on its constituent parts
- 6 Hypothetical Worst-Case Failure Modes
  - Why ?
    - Failure modes obtained from different sources and Analysis are not enough – cover only a fraction of possible failure modes
  - How to solve this deficiency?
    - Consider a worst case scenario in failure modes
      - Environmental conditions
      - Maintenance/repair failures and mishandling etc

#### This will be covered later in detail

# **Component Failure Modes**

- First
  - Sensor Failure Modes
  - Actuator Failure Modes
  - Power and Interconnect Failure Modes
  - Operator Failures
- Next
  - Computer Failure Modes

## **Sensor Failure Modes**

- Sensor
  - Converts a physical stimulus into a corresponding electrical signal
  - <u>Sensor failure</u>: the output is an incorrect signal for a given stimulus
- Sensor Hardware Failure Modes
  - Explained in terms of time responses



## **Sensor Failure Modes**

• Sensor Hardware Failure Modes - Explanation

| Sensor Signal<br>Type | Failure Mode            | Explanation                                                                |
|-----------------------|-------------------------|----------------------------------------------------------------------------|
|                       | Minimum output          | Sensor output maintains lowest possible signal level.                      |
|                       | Maximum output          | Sensor output maintains highest possible signal level.                     |
| Analog or Digital     | Constant output         | Sensor output does not change when input changes                           |
|                       | Offset                  | Actual sensor output is offset by a constant amount from correct value     |
|                       | Erratic                 | Actual sensor output varies erratically about true sensor response.        |
|                       | Intermittent            | Switches intermittently between high and low level.                        |
| Disorate Level        | Spurious switch         | Switches with no input.                                                    |
| Discrete Level        | Switch at wrong level   | Switches when input stimulus is at an incorrect value.                     |
|                       | Fail to switch          | Fails to switch with input change.                                         |
|                       | Short circuit           | Switch contact appears closed.                                             |
| Discrete Switch       | Open circuit            | Switch contacts appears open.                                              |
|                       | Intermittent open/short | Switch contact alternates intermittently between open and closed position. |
|                       | Switch at wrong level   | Switches when input stimulus is at an incorrect value.                     |
|                       | Fail to switch          | Fails to switch with input change.                                         |

### Sensor Failure Modes - Example

- Sensor Hardware Failure Modes
  - Transducer and Transmitter

#### Sensor Hardware Failure Modes

| Sensor             | Failure Modes                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| Current (AC) meter | Shorted. Open circuit. Degraded operation. (1)                                                                          |
| Level transducer   | Minimum output. Maximum output. Constant. Erratic. (2)                                                                  |
| Photodetector      | Open. Shorted. Degraded operation. (1)                                                                                  |
| Position gyroscope | Drift. Out of specification. Opened. Shorted.<br>Binding/sticking. Spurious/false operation. Unstable<br>operation. (1) |
| Thermocouple       | Constant output. (2)                                                                                                    |

Sources: (1) FMD-91. (Op. cit.) (2) IEEE Std 500-1984. (Op. cit.)

## **Sensor Failure Effects**

- No direct impact of sensor failure to sensor itself
- Dangerous if the sensor (failure) output is connected with operator actions
- Directly connected to mishaps when sensor outputs are processed by the computer to generate signals for effectors.

| Supervisory Comput   | _                                                                                                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Communication L | k                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                |
| Computer             | Potertioneler (Extension Postion) Potertioneler (Potocnal Postion) Potertioneler (Vertical Postion) Velocineler (Vertical Postion) Aduator Extension Post Aduator Extension Aduator Extension Aduator Potocnal |

22



| Side Bar                    | <ul> <li>Lessons/Suggestion         <ul> <li>Start with clear understanding of your system. Don't do on others. Use your own system with your own scopes, functions, and methods</li> </ul> </li> </ul>    |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Computer<br>Control         | <ul> <li>All inputs and outputs, corresponding components<br/>(sensors &amp; actuators) are to be included in the<br/>system design, requirement, hardware connection,<br/>etc.</li> </ul>                 |
| System<br>Design<br>Class   | <ul> <li>Understand and know the way your system operates<br/>(i.e., output generation with all conditions of inputs)<br/>under normal condition – this becomes the basis of<br/>your flowchart</li> </ul> |
| Activities<br>in 5<br>Steps | <ul> <li>Flowchart is to connect input conditions to outputs to<br/>make your system work. Use a diamond shape for<br/>conditions and decisions to make (IFELSE)</li> </ul>                                |
|                             | Side Bar<br>Computer<br>Control<br>System<br>Design<br>Class<br>Activities<br>in 5<br>Steps                                                                                                                |

|                  | <ul> <li>Assignment #3</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | <ul> <li>Check the webpage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Side Bar         | Lecture 4: Computer Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Assignment<br>#3 | Assignment #3: Read <u>Chapter 1 The Origins of</u><br><u>Accidents</u> of Scott Sagan's book, <i>The Limitation of</i><br><i>Safety</i> (Princeton University Press, 1993), and<br>discuss the subject with <u>one's own critic view</u> . The<br>first paragraph should comprehensively summarize<br>the entire report. Submit (1) a paper report by Oct 16<br>and (2) a presentation file by Oct 20 via email.<br>Selected good works will be invited to present in the<br>class of Oct 21.<br>Lecture 5: How Computer Systems Fail |  |  |

## Sensor Failure Effects - Example

### Effector/Actuator Failure Modes and Effects

- Effector/Actuator
  - Conversion of electrical signal into a physical stimulus
  - Failure: incorrect physical stimulus for a given electrical signal
- Effector/Actuator Hardware Failure Mode Data
  - Same source for sensor hardware failure modes
  - RAC and IEEE data sources



- Actuator physical outputs: min, max, constant, offset, erratic values, intermittent, and transient failures
- Effects of Actuator Hardware Failure
  - Possibly, considerable mechanical and electric power output can be generated, which may lead to property damage and personnel injury during system operation, system non-operating maintenance and inspection periods.
  - Usually a direct cause of mishaps

### Effector/Actuator Failure Modes (partial list)

#### Effector Failure Modes

| Type of Effector      | Failure Modes                                                                                                                                                                                                                                                                                            |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Blower                | Bearing failure. Mechanical failure. Electrical failure. Blade<br>erosion. Out of balance. Motor failure. (1)                                                                                                                                                                                            |  |
| Electric motor        | Binding/sticking. Fails to start. Fails to run after start. (1)                                                                                                                                                                                                                                          |  |
| Electric power switch | Opened. Mechanical failure. Shorted. High contact<br>resistance. (1)                                                                                                                                                                                                                                     |  |
| Pump                  | Leaking. No operation. Seal/gasket failure. Intermittent. (1)                                                                                                                                                                                                                                            |  |
| Relay - power         | Fail to close. Fail to open. Shorted. (1)                                                                                                                                                                                                                                                                |  |
| Relay - protective    | Spurious operation. Fails to open. Fails to close. (2)                                                                                                                                                                                                                                                   |  |
| Valve - hydraulic     | Leaking. Stuck closed. Stuck open. Intermittent operation.<br>Improper flow. (1)                                                                                                                                                                                                                         |  |
| Valve - pneumatic     | Broken. Leaking. Opened. Closed. Spurious opening.<br>Spurious closing. (1) Spurious opening. Spurious closing.<br>Failure to open on demand. Failure to close on demand.<br>Premature or delayed actuation (Actuation that occurs out<br>of timing sequence). Partially opening. Partially closing. (2) |  |
| Valve - solenoid      | Spurious opening. Spurious closing. Failure to open on<br>demand. Failure to close on demand. Premature or delayed<br>actuation (Actuation that occurs out of timing sequence).<br>Partially opening. Partially closing. (2)                                                                             |  |

Sources: (1) FMD-91. (Op. cit.) (2) IEEE Std 500-1984. (Op. cit.)

## **Actuator Failure - Example**

#### HU Professor's Invention May Save Lives

#### BY ANDREW MOTEN Contributing Writer

Almost two years ago, Charles Kim, Ph.D., professor of engineering, nearly lost his life because of an electrical fault.

Kim says a fault caused his car to stall in early 2005, as he drove in a high traffic area of I-395.

"My car stopped three different times—once while on the Interstate. And the mechanics couldn't find a problem," he said. "Later on, I found out it was a problem with the electrical wire in my car."

Each year, electrical faults, also known as arcing, cause approximately 40,000 house fires in the United States and an unknown number of automobile problems, according to a 2004 report by the Consumer Product Safety Commission. The house fires cause more than \$680 million in property damages.

Through the necessity to find the electrical fault, Kim developed a device that could potentially detect faulty electrical wiring before disasters have the chance to occur. This budding breakthrough in technology works on the same principal as a DSL phone/internet line.

"I started on this project around the summer of 2005," Kim said, who has been a professor of computer and electrical engineering at Howard for almost eight years. "I've been working with electric faults and



Engineering Professor Charles Kim, awaits patent approval for a device that would detect faulty electric wires.

the two began last year, Kim said.

"If patented, it is my hope that the technology is used to benefit the likes of commercial airline companies, U.S. Military aircraft and ships, as well as everyday civilians," Kim said.

Until Kim's patent is completed, the method for detecting faulty electrical wires is physical observation, a method that leaves room for human error. In some instances, that margin has proved dangerous and oftentimes fatal.

In July 1996, 230 people died when TWA Flight 800 exploded in the airspace just outside of Long Island, N.Y. and crashed into the Atlantic Ocean. In 2003, a series of manhole explosions occurred



The Hilltop Tuesday, January 23, 2007

# **Distributor Ignition Coil**



## The rest of the story

#### TECHNOLOGY

#### Biz group teams with Howard to commercialize tech

University brains pair up with ag business brawn to take technologies from the lab to the marketplace

> By Ben Hammer Staff Reporter

A manufacturing industry group has teamed with Howard University to commercialize technologies that could have applications for local companies involved in defense, biotechnology and other businesses.

The National Center for Manufacturing

Breaks or modifications in power flow are tions Group of Germantown use to send especially costly and dangerous in planes and ships, which contain many miles of tightly wound lines interwoven with other cables. The system could be used in other complex electrical systems such as car engines to locate hard-to-find problem spots that flare up intermittently but not when a mechanic is looking for a fix.

"The problem is you cannot reach, you cannot pinpoint because they are mostly out of reach or under compartments you don't know where they are," Kim says. "So pilots know something is wrong, and they have to ground or abort the mission in midair."

NCMS senior program manager David

digital bits of data over electrical lines. Current and similar companies provide Internet service in buildings through plug-in connections and sensors to power companies for monitoring their infrastructure in the field.

Getting Kim's hardware-and-software system into commercial production won't be easy.

Commercializing research technologies developed in government and university labs is notoriously difficult because researchers and businesses don't speak the same language, and private industry sees commercialization efforts as risky.

"It's just been really hard," says April Young, Comerica senior vice president of venture banking. "There have not been a lot of successes because the culture is very different. A company is usually 1 percent idea and 99 percent execution, and that's just a challenge."

Young, a former director of the Virginia Department of Economic Development and executive director of the Fairfax County Economic Development Authority, has been involved for years in efforts to strengthen the area's capabilities to transfer technologies from research labs into businesses.

# E-MAIL: BHAMMERIDEZXCURNALS.COM PHONE: 703/258-0831



US008102779B2

#### (12) United States Patent Kim

- SYSTEM AND METHOD OF DETECTING (54) AND LOCATING INTERMITTENT ELECTRICAL FAULTS IN ELECTRICAL SYSTEMS
- Inventor: Charles J. Kim, Annandale, VA (US) (75)
- Assignee: Howard University, Washington, DC (73)(US)

#### US 8,102,779 B2 (10) Patent No.: (45) Date of Patent: Jan. 24, 2012

| 6,198,401 B1  | 3/2001  | Newton et al.        |
|---------------|---------|----------------------|
| 6,313,642 B1  | 11/2001 | Brooks               |
| 6,385,561 B1  | 5/2002  | Soraghan             |
| 6,477,475 B1* | 11/2002 | Takaoka et al 702/59 |
| 6,646,447 B2  | 11/2003 | Cern                 |
| 6,725,176 B1  | 4/2004  | Long et al.          |
| 6,759,851 B2  | 7/2004  | Hazelton             |
| 6,842,011 B1  | 1/2005  | Page                 |
| 6,856,936 B1  | 2/2005  | Chen                 |
| 6,868,357 B2  | 3/2005  | Furse                |
| 6.927.579 B2  | 8/2005  | Blades               |

#### Effector/Actuator Failure - Example



- Scenario 1: The system in in standby and all valves are initially closed. Then <u>HV undergoes a spurious opening</u>. → Hydrogen mixes with air and the mixture ignites explosively.
- Scenario 2: The engine is presently running with HV and OV open. In the PURGE command, the <u>HV fails to close</u>. → Hydrogen flows into the test chamber resulting in explosion.

#### Power and Interconnect Failure Modes and Effects

- Electrical power is required for all computer systems
  - Utility Grid Source (for ground-based system)
  - On-site Source (for mobile or transportation system)
  - Conversion to DC or lower AC is usually required to furnish power for electronic components and instruments
- Interconnect Hardware
  - All computer system components are connected from the power source through use of electrical wires, hydraulic or pneumatic lines.
  - Interconnect hardware is also required to connect sensors to computers and computers to actuators (effectors)
- Interconnect Hardware Failure Modes
  - See next slide
- Interconnect Hardware Failure Effects
  - The one after the Modes slide

### Power and Interconnect Failure Modes (partial list)

#### Power and Interconnect Component Failure Modes

| Component                               | Failure modes                                                 |
|-----------------------------------------|---------------------------------------------------------------|
| Electronic/instrumentation power supply | Incorrect voltage. No output.                                 |
| Hydraulic accumulator                   | Leaking. No operation. Out of specification.<br>Stuck closed. |
| Hydraulic pump                          | Leaking. Improper flow. No flow.                              |
| Interconnect, electrical                | Open. Shorted. Intermittent.                                  |
| Interconnect, pneumatic                 | Leak.                                                         |
| Interconnect, hydraulic                 | Leak.                                                         |
| Public utility power                    | No output.                                                    |
| Uninterruptable (backup) power supply   | Fail to transfer on demand.                                   |

Source: (1) FMD-91. (Op. cit.)

## Intermittent Electrical Interconnect Faults

- SwissAir 111
- TWA 800
- Fires and possibly explosion by arc and spark

Swissair Flight 111 | September 2, 1998

After a four-and-a-half-year investigation, which revealed evidence of an in-flight fire above the cockpit caused by faulty wiring and fueled by flammable airframe insulation, Canada's Transportation Safety Board published its final recommendations.

TWA Flight 800 | July 17, 1996

focused on the flammability of the 747's fuel tank, including its potential ignition sources, design, and certification standards, and on the maintenance and aging of the aircraft's other systems, particularly wiring and fittings that could spark or overheat. Within two years of the crash, new fuel-management procedures were required for all 747s.

## Swissair 111

Arcing from wiring of the in-flight entertainment network did not trip the circuit breakers but ignited flammable covering on insulation blankets and quickly spread across other flammable materials. The crew did not recognize that a fire had



#### FBI closes probe into TWA crash Agency says criminal

act did not cause blast By Post Million

Associated Press.

Analytics of the set had accessed to high in-mile-scient we must have apped that ones will be declared until him 1000. This Fight was a manufactured that without a set had a state had with an intervention of the set of t

The CM remained a pleadation votes "pander re-analyting the materials of 1998, Fayle 200, From left, that is the operators of the account. Foreign are please the Plane based flight as it exploses of the closed of Long Island. From two shows the hery descent NEW YORK -- After employing more of the large of frame time shows the actual destripting as it planteness toward be occase

AL ADDRESS OF

The second second

and the second second

warms in statements

free TWARE


#### Intermittent Electrical Interconnect Faults

• USS Parche (683) – Arc Damage



Figure 2. Inside the rear of a typical small switchboard. The red painted bus bars vary from 1 to 2 in. wide.







**Figure 1.** Arcing damage sustained on USS *Parche* (SSN 683). Note that some of the copper bus, cables, insulators, and switchboard structure are missing.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

Evolution of Arc Fault Protection Technology at APL H. Bruce Land III, Christopher L. Eddins, and John M. Klimek

### NFF ("No Fault Found")

#### Chronic Problem of Intermittent Faults: NFF

- Problem reported by crew is not reproduced.
- Average NFF figure for avionics is approx. 30%.
- Off-Line Testing Problem with Random, Intermittent Nature of the Electrical Faults

Saturday Dec 18, 2004 Aviation Today

No-fault-found findings are turning up at the extraordinarily high rate of 50 to 60 percent at commercial airlines and military repair depots. Much of this is attributable to the failure of ramp and bench tests to detect age-related problems found in avionics boxes and other aircraft components, not to mention old wiring.



#### • So, how to detect intermittent faults?

## Invention

#### (12) United States Patent Kim

- (54) HOUSING ARRANGEMENT FOR FAULT DETERMINATION APPARATUS AND METHOD FOR INSTALLING THE SAME
- (75) Inventor: Charles J. Kim, Annandale, VA (US)
- (73) Assignce: Howard University, Washington, DC (US)

----

. . .

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 273 days.

| (45) Date of Patent:                                                                                                                                                               |                                                                                                                      |                                                                                                                                                         | : Nov. 1, 2011                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6,198,401<br>6,313,642<br>6,385,561<br>6,477,475<br>6,725,176<br>6,759,851<br>6,842,011<br>6,856,936<br>6,868,357<br>6,927,579<br>6,934,655<br>6,965,303<br>6,972,574<br>7,319,574 | B1<br>B1<br>B1<br>B2<br>B1<br>B2<br>B1<br>B1<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2<br>B2 | 3/2001<br>11/2001<br>5/2002<br>11/2002<br>11/2004<br>7/2004<br>1/2005<br>2/2005<br>3/2005<br>8/2005<br>8/2005<br>8/2005<br>11/2005<br>12/2005<br>1/2008 | Newton et al.<br>Brooks<br>Soraghan<br>Takaoka et al.<br>Cern<br>Long et al.<br>Mazelton<br>Page et al.<br>Chen<br>Furse<br>Blades<br>Jones<br>Mollenkopf<br>Allan<br>Engel |

(10) Patent No.:







39

#### Power and Interconnect Failure Modes and Effects

- Interconnect Hardware Failure Effects
  - Generally results in an <u>apparent failure</u> of primary components, or <u>simultaneous dysfunction</u> of computer, sensor, and actuator electronics.
  - Failure in electrical interconnect between sensor and computer make computer "think" a sensor failure.
  - Failure in electrical interconnect between a computer and an actuator make computer "think" a required task is completed, while no actuator action is performed.

## **Operator Failures**

- Operator failure has two forms
  - Operator error
    - Operator mistakes in following correct procedure, triggering a mishap
    - Ways of making errors
      - Omitting of required actions
      - Performing of non-required actions
      - Failing to recognize needed actions
      - Responding poorly (too late, too early, incorrect)
      - Failing to communicate (miss-communication)
  - Procedural inadequacies
    - Design faults in procedures, causing correctly acting operator to fail

# **Combination of Failures**

# The Washington Post

#### Metro Crash: Experts Suspect System Failure, Operator Error in Red Line Accident

By Lyndsey Layton Washington Post Staff Writer Tuesday, June 23, 2009

Experts familiar with Metro's operations focused last night on a failure of the signal system and operator error as likely causes of yesterday's fatal Red Line crash.

Metro was designed with a fail-safe computerized signal system that is supposed to prevent trains from colliding. The agency's trains are

run by onboard computers that control speed and braking. Another electronic system detects the position of trains to maintain a safe distance between them. If they get too close, the computers automatically apply the brakes, stopping the trains.



These systems were supposed to make yesterday's crash impossible.

In yesterday's crash, it appeared that the operator of the train that crashed did not apply the emergency brakes, also known as the "mushroom." Experts said the train appeared to be traveling fast before impact because the force pushed the first car of the train on top of the train ahead. Witnesses on the train that crashed also reported that the train did not brake before impact.

There was no reason to think that the operator did not spot the train ahead of her yesterday. The weather was clear, and the trains were not in a tunnel.

# The Second Part

- Computer Hardware Failure Modes and Effects
- "Tin Whiskers" get attention recently

#### **Computer Hardware Failure Modes and Effects**

- Digital Integrated Circuit (IC)- chip
- Physical construction of IC
- Packages
- Pins
  - Signal pins
    - Binary information flow in and out of the chip
  - Support pins
    - Power
    - Ground

#### **Digital IC Failure Mechanisms and Modes**

 <u>Concern</u>: generation of incorrect output bit pattern on its signals pins given a correct input bit pattern

#### Digital Integrated Circuit Failure Mechanisms and Modes

| Digital Component                          | No.<br>Pins     | Failure Mechanisms                                                                                                                  | Failure Modes                                                          |
|--------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| CPU (microprocessor)<br>Integrated circuit | 40<br>to<br>296 | Die attachment failure.<br>Metallization failure.<br>Contaminated. Cracked/<br>fractured. Oxide defects.                            | High leakage current.<br>Output stuck low.<br>Shorted.                 |
| Memory – MOS<br>integrated circuit         | 16<br>to<br>40  | Mechanical failure.                                                                                                                 | Data bit loss. Short.<br>Open. Slow transfer of<br>data.               |
| Digital integrated circuits<br>(General)   | 14<br>to<br>40  | Contaminated. Oxide<br>defects. Wire bond failure.<br>Metallization failure. Die<br>attachment failure.<br>Package/related failure. | Open. Shorted. Output<br>stuck high. Output stuck<br>low. Supply open. |

Source: (1) FMD-91. (Op. cit.)

# **IC Failure Modes**

- Input Data Alteration between the pins and the chip
  - Open wire (wire-bond failure)
  - Opened wire contacting another wire
  - Can undergo permanent, intermittent, and transient failures
- Chip Output Data Alteration between chip and the pins
  - Open wire (wire-bond failure)
  - Opened wire contacting another wire
  - Can undergo permanent, intermittent, and transient failures
- Chip Failure in performing I/O functions
  - Transistors embedded on silicon material
    - Silicon bulk defects
  - Micro-thin aluminum conductors of the circuits
    - Aluminum defect, oxide defects
  - Can undergo permanent, intermittent, and transient failures
  - No way of knowing the location, extent, and specific effects of the failure mechanisms/modes
  - No practical way to translate failure mode/mechanism data into a specific functional failure modes

#### Electronic Interface Component Failure Modes and Effects

#### • Commonly employed electronic components

 Table 3.6 Computer Interface Components Failure Modes/Mechanisms and Effects

| Computer Interface<br>Component | Failure Modes/Mechanisms                   | Failure Effects                                                                                               |
|---------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Capacitors (decoupling)         | Short. Change in value. Open.              | Loss of electronics function<br>(short). Reduction in<br>transient protection (Open.)                         |
| Connector/connection            | Open. Poor contact/intermittent.<br>Short. | Loss of electronics function or data alteration.                                                              |
| Clock                           | Stops. Frequency change.                   | Loss of CPU function (clock<br>stoppage or rate increase).<br>Frame period increase<br>(clock rate decrease.) |
| DC power supply                 | Incorrect voltage. No output.              | Loss of electronics function.                                                                                 |
| Electrical filter (EMI)         | Shorted, capacitor failure.                | Reduction or loss in transient protection.                                                                    |
| Printed wiring assembly         | Open. Short.                               | Loss of electronics function<br>or data alteration.                                                           |

. /

Source: (1) FMD-91. (Op. cit.)

# **CPU Functional Failure Modes**

- Worst-Case Scenario Analysis
- Bigger threat is the propagation of the CPU failures to the outside – Safety concern

| Failed CPU<br>Component(s)<br>(Figure 2.18) | Failure Effect<br>(Local)                                                |
|---------------------------------------------|--------------------------------------------------------------------------|
| ALU                                         | Arithmetic or logical operation yields incorrect result.                 |
| Instruction decoder & pointer               | Generates incorrect address causing memory to return incorrect contents. |
| Accumulator & register(s)                   | Potential alteration of correct data or address.                         |
| Input port                                  | Alters correct input data.                                               |
| Output port                                 | Alters correct output data.                                              |
| Memory data<br>interface                    | Alters data written to memory or data and instructions read from memory. |
| Memory address interface                    | Alters correct address before memory addressing.                         |

Table 3.7 CPU Functional Failure Modes

### ADC/DAC Functional Failure Modes and Effects

| <b>1 able 3.9</b> Effector Output Module Functional Failure Modes at | and E | ttects |
|----------------------------------------------------------------------|-------|--------|
|----------------------------------------------------------------------|-------|--------|

| Effector Output<br>Module                        | Failure Mode       | Failure Effects                                                                             |
|--------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|
| D/A converter<br>(multichannel)<br>(Figure 2.12) | Conversion failure | Incorrect output data including<br>minimum, maximum, constant,<br>offset, or erratic values |
|                                                  | Select failure     | Incorrect analog channel selected                                                           |
| Digital/discrete                                 | Conversion failure | Incorrect output bit(s)                                                                     |
| converter (Figure 2.12)                          | Select failure     | Incorrect discrete channel selected                                                         |
| Digital/digital converter<br>(Figure 2.12)       | Conversion failure | Incorrect digital output                                                                    |

# **Operator Input Device Failure Modes**

| Operator Input Device | Failure Modes/Mechanisms                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keyboard assembly     | Mechanical failure. Spring failure. Contact failure.<br>Wiring and connection failure. Locked up.<br>Indicator/display failure. Integrated circuit failure.<br>Cable failure. |
| Potentiometer         | Opened. Intermittent. Drift. Spurious/false operation.<br>High contact resistance. Shorted. Mechanical failure.                                                               |
| Switch (summary)      | Opened. Mechanical failure. Shorted. High contact resistance.                                                                                                                 |
| Switch (toggle)       | Mechanical failure. Opened. Contact failure. Shorted.<br>Spring failure. Intermittent operation.<br>Binding/sticking.                                                         |
| Trackball             | Lamp failure. Connector failure. Integrated circuit failure. Diode failure.                                                                                                   |

#### Table 3.10 Operator Input Device Failure Modes/Mechanisms

Source: (1) FMD-91. (Op. cit.)

## **Operator Output Device Failure Modes**

| Operator Output Device               | Failure Modes/Mechanisms                                                               |
|--------------------------------------|----------------------------------------------------------------------------------------|
| Alarm                                | False Indication. Failure to operate on demand.<br>Spurious operation. Degraded alarm. |
| CRT (Cathode ray tube) video display | Power supply failure. Loss of control.<br>Performance degradation. Open filament.      |
| Lamp /light                          | No illumination.<br>Loss of illumination.                                              |
| Light emitting diode (LED)           | Open. Short.                                                                           |
| Klaxon (annunciator module)          | Degraded operation. Spurious/false operation.<br>Fails to operate on demand.           |
| Meter                                | Faulty indication. Open. No indication.                                                |
| Liquid crystal display               | Dim rows. Blank display. Flickering rows.<br>Missing elements.                         |

#### Table 3.11 Operator Output Device Failure Modes/Mechanisms

# **Communication Module Failures**

- Communication Components
  - Optical transceivers
  - Wireless transceivers
  - Routers
  - Modem
  - Radio
- Failure Modes
  - Failing to transmit and/or receive data
  - Transmitting incorrect data
  - Distorting received data

# **Software Faults and Failures**

- Observation
  - Software components, "codes" or "instructions", do not break or wear out.
  - Many reports of "Software failure" "Computer program ("collection of instructions") failure"
- Definition of "Software Failure"
  - "Software does not produce a correct response given a set of inputs and internal states"
  - Software failures are caused by
    - Software Fault
    - Software Requirement Fault

#### Software fault vs. Software requirement fault

- <u>Remember our class activity for an electronic control</u> <u>system</u>: Step 1 Computer System → Step 2 Software <u>Requirement</u> → Step 3 Hardware Programming → Step 4 Flowchart → Step 5Pseudo-Coding → Program
- Software Fault
  - A <u>defect</u> in the software as a result of <u>programming</u> following the software requirements
  - Debug may correct this type of fault
    - Allocation of non-computer-trained engineers would not solve the problem
- Software Requirement Fault
  - A defect in the software requirement itself
  - *Design* faults and failures
    - Software engineers may not correct this type of fault

#### SW Fault Example 1 – Requirement or SW fault?



#### SW Fault Example 2 - Requirement or SW fault?



- A RB " 0 A Π 10 А S1 п A<sub>2</sub> D ٩ Sa. Α, Π ¢ Π A4 ANALOG 7 [] α A<sub>s</sub> 6 D Ac D 5 17 D Ay 4 0 ź. D AS 3 🛛 D Ag ıΰ υÁο 





# **Fault-Free Software**

- Fault-Free Software why we don't see as many computer-caused accidents in microwave oven, DVD player, and TVs as in Automobile
- Computer control systems for most home appliances are "bug free" because they:
  - Employ discrete variables only
  - Involve a finite discrete Input/Output function (namely, truthtable)
  - Have no real-time constraints
  - Therefore, can be exhaustively tested (subjected to all possible combinations of input variables and correct output for each input) and verified
- Simply put, their software requirements are simple.

#### Side Bar

Assignment #3

#### System Complexity

and

Accidents

Assignment #3: Read <u>Chapter 1 The Origins of Accidents</u> of Scott Sagan's book, *The Limitation of Safety* (Princeton University Press, 1993), and discuss the subject with <u>one's</u> <u>own critic view</u>. The first paragraph should comprehensively summarize the entire report. Submit (1) a paper report by Oct 16 and (2) a presentation file by Oct 20 via email. Selected good works will be invited to present in the class of Oct 21.

Software in Complex Systems

- Software in Complex Systems:
  - If requirements are complex, S/W faults can be expected to be made during system development → lead to residual S/W faults making into the installed S/W

# S/W Faults/Failures and Effects

- 3 Types of S/W
  - Application S/W
    - S/W made/created by designer
  - System S/W
    - Third party S/W like Windows, iOS, Android, or Unix
    - Hosts the application S/W and provide an interface between the application S/W and the hardware [ex. PC, Smartphones, etc.]
  - Development S/W
    - Application development platform S/W
    - Assembler, compliers, libraries,
    - JDK
    - iOS SDK
    - Android SDK
    - MSDN

Experience suggests that if the designer is correctly using mature, field-proven system S/W and development S/W, the number of faults that can be surfaced from the application S/W will be smaller.

> One clearly assumes great risk by undertaking a safetycritical compute system design using newproduction system S/W and/or development S/W.

# Application S/W Faults -1

- 3 categories
  - 1 Misinterpreted requirements
    - Programmer has an incorrect understanding of the requirements
    - In a complex system with requirements of a hundred or more pages, dangerous misinterpretation can be made, where, particularly, the programmer has limited understanding of the physical application.
  - 3 Clerical Error
    - Typographical errors
      - Period(.) used instead of comma(,)
      - Sign reversals ( +  $\rightarrow$  ;  $\rightarrow$  + )
      - ">" instead of ">>"

# Application S/W Faults -2

- 3 categories
  - 2 Incorrect software design or implementation
    - Requirements are understood correctly, but an error is made in the design of the software or in coding.
    - This is the classic "software bug"
    - Subtle fault which can be introduced under the assumption that the coding correctly follows the requirements
    - Error causes
      - Wrong variable names
      - Wrong functions
      - Mistake in a loop index range
      - Failing to initialize variables
      - Calling the wrong subroutine
      - Falling into an infinite loop
      - Stack overflow

# Most Common Errors in C++

Listed below are some common programming errors

1. Misuse of the Include Guard.

A common mistake is to use same symbol in multiple files for #ifndef.

2. Typo's : Using ">" for ">>" and "<" for "<<"

3. Trying to directly access the private variables in the main program.

4. Switch Statments without break.

5. Wrong usage of postfix and prefix operator (diff between i++ and ++i)

6. Undeclared and Unitialised Variables and functions.

7. ALWAYS USE MAKE FILE if you have more than one C++ program. The order of

compilations matters a lot too.

8. Trying to include "INCORRECT" header fuction.

9. Marking a member function as const in the class definition but not in the member function implementation.

10. Returning a value in a void function.

11. Confusing the name of an array with the contents of the first element.

12. Cstring array Errors - Arr[10] = Arr[0] to Arr[9]. Trying to access Arr[10] element.

13. Using "=" ( assignment operator ) instead of "= =" (comparison operators) scanf () without '&' and wrong format.(IN C)

14. Trying to divide a number by Zero.

15. Poor Loop Exiting comparisons will tend to either loop being not executed at all or goes to an infinite loop.

16. Not using string functions and treating the strings are integer. Say trying to compare string by (string1= = string2), rather than using strcmp command

17. CString not terminated by '\0'- Null character

18. Mismatched "{" or IF-ELSE statements or for that matter any looping statment.

19.Namespace errors

5

ace.cs.ohiou.edu/new users/error.html

## **Design Faults and Failures**

- Causes of Design Requirements ["expected actions of the compute system"] and Design Faults
  - 1 Personnel Error
    - Outright mistakes
    - Omissions
    - Misinterpretations
  - 2 Limited Engineering Knowledge
    - Limited engineering knowledge available
    - Not enough experience on unpredictable faults
      - Nuclear plants
      - Airliners
  - 3 Added Complexity
    - Safety-Related Components added to the basic computer control system in the safety-critical systems → simple design problem becomes highly complex problem
    - In general, systems get more complex, and deployed computer control system and safety-related system are complicated and "out-of-hands"

# Part Failure Rate Determination - Activity

- Understanding the Failure Rate Models
  - Internal structure, package type, manufacturing process, testing process, screening process, quality control, and the condition the part is installed and used.
- Preparation
  - MIL-HDBK-217F
    - printout of section 5 for guided example for microcircuits
    - PDF file for other sections for resistors, capacitors, diodes, etc.
  - Notes or scratch papers
  - Calculators or Calculator Software
  - Patience

MIL-HDBK-217F

### Part Failure Rate Model (5.1 Gate/Logic Arrays and Microprocessors)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours

- <sup>λ</sup>p : Failure Rate
- C1 : Die Complexity Failure Rate
- C2 : Package Failure Rate
- $\pi_{\mathrm{T}}$  : Temperature Factor
- $\pi_{_{\rm F}}$  : Environmental Factor
- $\pi_{\mathbf{Q}}$ : Quality Factor
- $\pi_{I}$ : Learning Factor (Years in Production)

Microprocessor Die Complexity Failure Rate - C1

|          | Bipolar        | MOS            |
|----------|----------------|----------------|
| No. Bits | C <sub>1</sub> | C <sub>1</sub> |
|          |                |                |
| Up to 8  | .060           | .14            |
| Up to 16 | 12             | 28             |
|          |                | .20            |
| Up to 32 | .24            | .56            |
|          |                |                |

| All | Other | Model | Parameters |
|-----|-------|-------|------------|
|     |       |       |            |

| Parameter                                        | Refer to     |
|--------------------------------------------------|--------------|
| ۳Ţ                                               | Section 5.8  |
| C <sub>2</sub>                                   | Section 5.9  |
| <sup>π</sup> Ε <sup>, π</sup> Ω <sup>, π</sup> L | Section 5.10 |

### Part Failure Rate Model (5.2 MOS Memories)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours

- <sup>λ</sup>p : Failure Rate
- C1 : Die Complexity Failure Rate
- C<sub>2</sub> : Package Failure Rate
- $\pi_{T}$ : Temperature Factor
- $\pi_{_{\rm F}}$  : Environmental Factor
- $\pi_{Q}$ : Quality Factor
- $\pi_{I}$ : Learning Factor (Years in Production)
- $\lambda_{cyc}$ : Read/Write Cycling Inducded Failure Rate (EEPROMS only)  $\lambda_{cyc} = 0$  For all other devices

$$\lambda_{\text{cyc}} = \left[ A_1 B_1 + \frac{A_2 B_2}{\pi_0} \right] \pi_{\text{ECC}}$$

A1 B1 A2 B2 : Model Factor

 $\pi_{\rm ECC}$  : Error Correction Code Options

#### Error Correction Code (ECC) Options:

1. No On-Chip ECC $\pi_{ECC} = 1.0$ 2. On-Chip Hamming Code $\pi_{ECC} = .72$ 3. Two-Needs-One $\pi_{ECC} = .68$ Redundant Cell Approach $\pi_{ECC} = .68$ 

## Part Failure Rate Model (5.3 CMOS VLSI with more than 60,000 gates)

#### $\lambda_p = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$ Failures/10<sup>6</sup> Hours

| $^{\lambda}p$ : Failure Rate                    | λ <sub>BD</sub> :Die Base Failure Rate                |  |
|-------------------------------------------------|-------------------------------------------------------|--|
| C1 : Die Complexity Failure Rate                | <b>πMFG</b> : Manufacturing Process Correction Factor |  |
| C <sub>2</sub> : Package Failure Rate           | <sup>π</sup> CD : Die Complexity Correction Factor    |  |
| $\pi_{T}$ : Temperature Factor                  | λορ : Package Base Failure Rate                       |  |
| $\pi_{E}$ : Environmental Factor                |                                                       |  |
| $\pi_{Q}^{2}$ : Quality Factor                  | <b>*PT</b> : Package Type Correctin Factor            |  |
| $\pi_L$ : Learning Factor (Years in Production) | λ <sub>EOS</sub> : Electrical Ovestress Failure Rate  |  |

| Part Type        | λ <sub>BD</sub> |             |
|------------------|-----------------|-------------|
| Logic and Custom | 0.16            | DIP         |
| Gate Array       | 0.24            | Pin Grid Am |

|                                       | *PT                |                   |    |  |
|---------------------------------------|--------------------|-------------------|----|--|
| Package Type                          | Hermetic           | Nonhermetic       |    |  |
| DIP<br>Pin Grid Array<br>Chip Carrier | 1.0<br>2.2<br>4.7. | 1.3<br>2.9<br>6.1 | 5. |  |

### Part Failure Rate Model (5.4 GaAs and Digital Device [of FET])

# $\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10<sup>6</sup> Hours

#### <sup>λ</sup>p : Failure Rate

- C1 : Die Complexity Failure Rate
- C<sub>2</sub> : Package Failure Rate
- $\pi_{T}$ : Temperature Factor
- $\pi_{_{\rm F}}$  : Environmental Factor
- $\pi_{\mathbf{Q}}$  : Quality Factor
- **π**<sub>I</sub>: Learning Factor (Years in Production)

| Application                                 | *A  |
|---------------------------------------------|-----|
| Digital Devices<br>All Digital Applications | 1.0 |

Digital: Die Complexity Failure Rates - C1

| Complexity<br>(No. of Elements) | с <sub>1</sub> |
|---------------------------------|----------------|
| 1 to 1000<br>1,001 to 10,000    | 25<br>51       |
| 1,001 10 10,000                 | 51             |

1. C<sub>1</sub> accounts for the following active elements: transistors, diodes.

 $\pi_A$  : Device ApplicationFactor

#### Part Failure Rate Model (Section 5.5 Hybrid Microcircuits)

#### 5.5 MICROCIRCUITS, HYBRIDS

69

DESCRIPTION Hybrid Microcircuits

#### $\lambda_p = [\Sigma N_c \lambda_c] (1 + .2 \pi_E) \pi_F \pi_Q \pi_L$ Failures/10<sup>6</sup> Hours

- N<sub>C</sub> Number of Each Particular Component
- λ<sub>c</sub> = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function ( $\pi_F$ ), screening level ( $\pi_Q$ ), and maturity ( $\pi_L$ ). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2  $\pi_E$ )). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume  $\pi_Q = 1$ ,  $\pi_E = 1$  and  $T_A =$  Hybrid Case Temperature for these calculations.

| Determine λ <sub>c</sub> for These<br>Component Types | Handbook Section | Make These Assumptions When Determining $\lambda_{c}$                                                             |
|-------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|
| Microcircuits                                         | 5                | $C_2 = 0$ , $\pi_Q = 1$ , $\pi_L = 1$ , $T_J$ as Determined from<br>Section 5.12, $\lambda_{BP} = 0$ (for VHSIC). |
| Discrete Semiconductors                               | 6                | $\pi_{Q} = 1, T_{J}$ as Determined from Section 6.14,<br>$\pi_{E} = 1.$                                           |
| Capacitors                                            | 10               | $\pi_Q = 1$ , $T_A =$ Hybrid Case Temperature,<br>$\pi_E = 1$ .                                                   |

| Det | ern | nin | ati  | on | of | 2      |
|-----|-----|-----|------|----|----|--------|
|     |     |     | PC11 |    | υ, | $\sim$ |

#### Failure Rate Determination Example 1 (Sec 5.13)

#### Example 1: CMOS Digital Gate Array

- Given: A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.
  - Solution

$$\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$$
 Failures/10<sup>6</sup> Hours

 $C_1 = .020$ 

1000 Transistors ~ 250 Gates, MOS C1 Table, Digital Column

| P 5-3 <u>MOS</u> D                | igital and Li  | near Gate/Logic Array Di        | e Complex      | # of logic gates (L), which have N inputs,    |
|-----------------------------------|----------------|---------------------------------|----------------|-----------------------------------------------|
| Digital                           |                | Linear                          |                | contained in T transistor chip:               |
| No. Gates                         | с <sub>1</sub> | No. Transistors                 | C <sub>1</sub> | T = T = T = T                                 |
| 1 to 100<br>101 to 1.000          | .010<br>.020   | 1 to 100<br>101 to 300          | .010           | 2*N 2*(N+1)                                   |
| 1,001 to 3,000<br>3,001 to 10,000 | .040<br>.080   | 301 to 1,000<br>1,001 to 10,000 | .040<br>.060   | 5,001 to 20,000 .0068                         |
| 30,001 to 60,000                  | .16<br>.29     |                                 |                | NAND, NOR, NOT: transistors = 2 * # of inputs |
|                                   |                |                                 |                | AND, OR, transistors = 2 * # of inputs + 2    |

## Failure Rate Determination Example 1

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours Solution (-continued)

| π <sub>T</sub> | = | .29 | Determine T <sub>J</sub> from Section 5.11              |
|----------------|---|-----|---------------------------------------------------------|
|                |   |     | T <sub>J</sub> = 48°C + (28°C/W)(.075W) = 50°C          |
|                |   |     | Determine $\pi_T$ from Section 5.8, Digital MOS Column. |

| All Other Model Parameters |  |  |  |  |
|----------------------------|--|--|--|--|
| Refer to                   |  |  |  |  |
| Section 5.8                |  |  |  |  |
| Section 5.9                |  |  |  |  |
| Section 5.10               |  |  |  |  |
|                            |  |  |  |  |

Avers

See 5

T<sub>J</sub>

#### MICROCIRCUITS, XT TABLE FOR ALL 5.8

Temperature Factor For All Microcircuits - πτ

|                    | 1                          |                      |                                                        |                          |                          | peratore                        |                               | crocito - /                     |
|--------------------|----------------------------|----------------------|--------------------------------------------------------|--------------------------|--------------------------|---------------------------------|-------------------------------|---------------------------------|
|                    | Section 5.8<br>Section 5.9 |                      | TTL, ÁSTTL,<br>CML, HTTL,<br>FTTL, DTL,<br>ECL, ALSTTL | F, LTTL, STTL            | BICMOS,<br>LSTTL         | III, I <sup>3</sup> L, ISL      | Digital MOS,<br>VHSIC CMOS    | Linear (Bipolar<br>& MOS)       |
|                    |                            | Ea(eV) →             | .4                                                     | .45                      | .5                       | .6                              | .35                           | .65                             |
| 2 <sup>, π</sup> L | Section 5.10               | T <sub>J</sub> (*C)  |                                                        |                          |                          |                                 |                               |                                 |
|                    |                            | 25<br>30<br>35<br>40 | .10<br>.13<br>.17<br>.21                               | .10<br>.13<br>.18<br>.23 | .10<br>.14<br>.19<br>.25 | .10<br>.15<br>.21<br>.31        | .10<br>.13<br>.16<br>.19      | .10<br>.15<br>.23<br>.34        |
| Effecti<br>Worte   | ve Activation Ener         | gy (eV) (Show        | m Above)                                               |                          |                          | .43<br>.61<br>.85<br>1.2<br>1.6 | 24<br>29<br>.35<br>.42<br>.50 | .49<br>.71<br>1.0<br>1.4<br>2.0 |
| verad              | e Active Device Cl         | hannel Temper        | ature (Gi                                              | As Devic                 | <b>95</b> ).             | 2.1<br>2.9<br>3.8<br>5.0        | .60<br>.71<br>.84<br>.98      | 2.8<br>3.8<br>5.2<br>7.0        |
| iee Se             | ction 5.11 (or Sec         | tion 5.12 for H      | ybrids) for                                            | T <sub>J</sub> Deter     | mination                 |                                 |                               |                                 |

71

# Example 1

5.11 MICROCIRCUITS, TJ DETERMINATION, (ALL EXCEPT HYBRIDS)

T.1 = T<sub>C</sub> +

- T<sub>J</sub> = Worst Case Junction Temperature (°C).
- $T_{C}$  = Case Temperature (°C). If not available, use the following default table.  $\frac{48}{2}$ 
  - θ<sub>JC</sub> = Junction-to-case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If θ<sub>JC</sub> is not available, use a value contained in a specification for the closest equivalent device or use the following table.

| Die Area > 14,400 mil <sup>2</sup> θ <sub>JC</sub><br>(℃W) | Die Area ≤ 14,400 mil <sup>2</sup><br>9 <sub>JC</sub> (°C/W)                              |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 11                                                         | 28                                                                                        |
| 10                                                         | 22                                                                                        |
| 10                                                         | 20                                                                                        |
| 10                                                         | 20                                                                                        |
| -                                                          | 70                                                                                        |
|                                                            | Die Area > 14,400 mil <sup>2</sup> θ <sub>JC</sub><br>(°C/W)<br>11<br>10<br>10<br>10<br>- |

75 mW

> P

The maximum power dissipation realized in a system application. If the applied power is
not available, use the maximum power dissipation from the specification for the closest
equivalent device.

50.1000000000001
| All Other Mo                                     | del Parameters |
|--------------------------------------------------|----------------|
| Parameter                                        | Refer to       |
| ⊼⊤                                               | Section 5.8    |
| C <sub>2</sub>                                   | Section 5.9    |
| <sup>π</sup> Ε <sup>, π</sup> Q <sup>, π</sup> L | Section 5.10   |

NOTES: 1.

- Тј TC+P OJC
- T<sub>C</sub> = Case Temperature (°C) P = Device Power Dissipation
  - Device Power Dissipation (V/)
  - Junction to Case Thermat Resistance (\*C/W)

### 5.8 MICROCIRCUITS, $\pi_T$ TABLE FOR ALL

|                                                                            | TTL, ÁSTTL,<br>CML, HTTL,<br>FTTL, DTL,<br>ECL, ALSTTL                                  | F, LTTL, STTL                                                                 | Bicmos,<br>LSTTL                                                                        | III, I <sup>3</sup> L, ISL                                                              | Digital MOS,<br>VHSIC CMOS                                                              | Linear (Bipolar<br>& MOS)                                                               | ľ, |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----|
| Ea(eV) →<br>T <sub>J</sub> (*C)                                            | .4                                                                                      | .45                                                                           | .5                                                                                      | .6                                                                                      | .35                                                                                     | .65                                                                                     | F  |
| 25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80<br>85 | .10<br>.13<br>.17<br>.21<br>.27<br>.33<br>.42<br>.51<br>.63<br>.77<br>.94<br>1.1<br>1.4 | 10<br>13<br>18<br>23<br>3<br>39<br>50<br>63<br>80<br>1.0<br>1.2<br>1.5<br>1.9 | .10<br>.14<br>.19<br>.25<br>.34<br>.45<br>.59<br>.77<br>1.0<br>1.3<br>1.6<br>2.1<br>2.6 | .10<br>.15<br>.21<br>.31<br>.43<br>.61<br>.85<br>1.2<br>1.6<br>2.1<br>2.9<br>3.8<br>5.0 | .10<br>.13<br>.16<br>.19<br>.24<br>.29<br>.35<br>.42<br>.50<br>.80<br>.71<br>.84<br>.98 | .10<br>.15<br>.23<br>.34<br>.49<br>.71<br>1.0<br>1.4<br>2.0<br>2.8<br>3.8<br>5.2<br>7.0 |    |

Temperature Factor For All Microcircuits - TT

 $\pi_{\rm T} = .29$ 

#### Determine T<sub>J</sub> from Section 5.11

 $T_{1} = 48^{\circ}C + (28^{\circ}C/W)(.075W) = 50^{\circ}C$ 

Determine  $\pi_T$  from Section 5.8, Digital MOS Column.

| All Other Model Parameters                       |              |  |  |
|--------------------------------------------------|--------------|--|--|
| Parameter                                        | Refer to     |  |  |
| ×T                                               | Section 5.8  |  |  |
| C <sub>2</sub>                                   | Section 5.9  |  |  |
| <sup>π</sup> Ε <sup>, π</sup> Q <sup>, π</sup> L | Section 5.10 |  |  |

### Package Failure Rate for all Microcircuits - C2

Section 5.9

 $C_2$ 

=

.011

|                                                                        |                                                                                                                        | Packa                                                                                                            | е Туре                                                                                             |                                                                        |                                                                                                               |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Number of<br>Functional<br>Pins, N <sub>p</sub>                        | Hermetic: DIPs<br>w/Solder or<br>Weld Seal, Pin<br>Grid Array<br>(PGA) <sup>1</sup> , SMT<br>(Leaded and<br>Nonleaded) | DiPs with Glass<br>Seal <sup>2</sup>                                                                             | Flatpacks with<br>Axial Leads on<br>50 Mil Centers <sup>3</sup>                                    | Cans <sup>4</sup>                                                      | Nonhermetic:<br>DIPs, PGA,<br>SMT (Leaded<br>and<br>Nonleaded) <sup>5</sup>                                   |
| 3<br>4<br>6<br>8<br>10<br>12<br>14<br>16<br>18<br>22<br>24<br>28<br>36 | .00092<br>.0013<br>.0019<br>.0026<br>.0034<br>.0041<br>.0048<br>.0056<br>.0064<br>.0079<br>.0087<br>.010<br>.013       | .00047<br>.00073<br>.0013<br>.0021<br>.0029<br>.0038<br>.0048<br>.0059<br>.0071<br>.0096<br>.011<br>.014<br>.020 | .00022<br>.00037<br>.00078<br>.0013<br>.0020<br>.0028<br>.0037<br>.0047<br>.0058<br>.0083<br>.0098 | .00027<br>.00049<br>.0011<br>.0020<br>.0031<br>.0044<br>.0060<br>.0079 | .0012<br>.0016<br>.0025<br>.0034<br>.0043<br>.0053<br>.0062<br>.0072<br>.0082<br>.010<br>.011<br>.013<br>.017 |
| 40<br>64<br>80<br>128                                                  | .015<br>.025<br>.032<br>.053                                                                                           | .024<br>.048                                                                                                     |                                                                                                    |                                                                        | .019<br>.032<br>.041<br>.068                                                                                  |

74

|                |        |                  |                        |                   | 5.10 | MICROCIRCUITS, TE, L AN | ND *Q TABLES FOR ALL |
|----------------|--------|------------------|------------------------|-------------------|------|-------------------------|----------------------|
| π <sub>E</sub> | -      | 4.0 Section 5.10 |                        |                   |      | Environmen              | Factor - RE          |
| -              |        |                  |                        |                   |      | Environment             | *E                   |
|                |        |                  |                        |                   |      | G <sub>B</sub>          | .50                  |
| $\pi_1$        | =      | 1                |                        | Section 5.10      |      | GF                      | 2.0                  |
| L              |        |                  |                        |                   | /    | GM                      | 4.0                  |
|                | A      | Other M          | Model Parameters       |                   |      | NS                      | 4.0                  |
|                | Param  | eter             | Refer to               |                   |      | NU                      | 6.0                  |
|                | *T     |                  | Section 5.8            |                   |      | AIC                     | 4.0                  |
|                | •      |                  |                        |                   |      | A <sub>IF</sub>         | 5.0                  |
|                | C2     |                  | Section 5.9            |                   |      | AUC                     | 5.0                  |
|                | π      |                  | Section 5.10           |                   |      | AUF                     | 8.0                  |
|                | E.     | Q' "L            |                        |                   | 6    | ARW                     | 8.0                  |
|                |        |                  |                        |                   |      | S <sub>F</sub>          | .50                  |
|                |        |                  |                        |                   |      | MF                      | 5.0                  |
| -              |        |                  |                        |                   |      | ML                      | 12                   |
| Tabl           | • 3-2: | Environ          | imental Symbol and Des | cription (cont.d) |      | C                       | 220                  |

| Environment                   | π <sub>E</sub> Symbol | Equivalent<br>MIL-HDBK-217E,<br>Notice 1<br>#E Symbol | Description                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|-----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Airborne, Inhabited,<br>Cargo | Aic                   | AIC<br>AIT<br>AIB                                     | Typical conditions in cargo compartments<br>which can be occupied by an aircrew.<br>Environment extremes of pressure,<br>temperature, shock and vibration are minimal.<br>Examples include long mission aircraft such as<br>the C130, C5, B52, and C141. This category<br>also applies to inhabited areas in lower<br>performance smaller aircraft such as the T38. |

| Learning Factor - T                                     |                                 |  |  |  |
|---------------------------------------------------------|---------------------------------|--|--|--|
| Years in Production, Y                                  | πL                              |  |  |  |
| ≤ .1<br>.5<br>1.0<br>1.5<br>≥ 2.0                       | 2.0<br>1.8<br>1.5<br>1.2<br>1.0 |  |  |  |
| π <sub>L</sub> = .01 exp(5.3535Y)                       |                                 |  |  |  |
| Y = Years generic device type has been<br>in production |                                 |  |  |  |

TABLES FOD ALL

|    |       |                                                   |                                     | All Other Mo                                                       | del Parameters              |
|----|-------|---------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|-----------------------------|
|    |       |                                                   | F_                                  | Parameter                                                          | Refer to                    |
| πQ | = 3.1 | Section 5.10                                      |                                     | ۸T                                                                 | Section 5.8                 |
|    |       | Group 1 Tests<br>Group 3 Tests (B-level)<br>TOTAL | 50 Points<br>30 Points<br>80 Points | С <sub>2</sub><br><sup>ѫ</sup> Е <sup>, ѫ</sup> Q <sup>, ѫ</sup> L | Section 5.9<br>Section 5.10 |
|    |       | $\pi_{\rm Q} = 2 + \frac{87}{80} = 3.1$           |                                     |                                                                    |                             |

### Quality Factors (cont'd): $\pi_{O}$ Calculation for Custom Screening Programs

| Group | MIL-STD-883 Screen/Test (Note 3)                                                                                                                                                                                                                      | Point Valuation              |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1.    | TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001<br>(Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008<br>for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014<br>(Seal Test, Cond A, B, or C) and TM 2009 (External Visual) | 50                           |
| 2*    | TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001<br>(Constant Acceleration, Cond B Minimum)<br>TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes)<br>and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External<br>Visual)   | 37                           |
| 3     | Pre-Burn in Electricals<br>TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for<br>Hybrids) (Post Burn-in Electricals @ Temp Extremes)                                                                                                          | 30 (B Level)<br>36 (S Level) |

$$\pi_Q = 2 + \frac{87}{\Sigma \text{ Point Valuation}}$$

EXAMPLES:

1 Mig. performs Group 1 test and Class B burn-in:

$$\pi_Q = 2 + \frac{87}{50+30} = 3.1$$

## Failure Rate Determination Example 1 - Finally

### Example 1: CMOS Digital Gate Array

- Given: A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.
  - Solution •  $\lambda_p = (C_1 \pi_T + C_2 \pi_E) \pi_Q \pi_L$  Failures/10<sup>6</sup> Hours C1 .020 .29 πт  $\lambda_{D} = [(.020)(.29) + (.011)(4)](3.1)(1) = .15$  $C_2 = .011$ Failure/10<sup>6</sup> Hours >>> 1000000/0.15  $\pi_{\rm E} = 4.0$ 66666666.6666666666  $\pi_{O} = 3.1$ >>> 365\*24 8760  $\pi_1 = 1$ >>> 66666666/8760 761

>>>

# Example 2 – Class Activity

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L} \qquad \text{Section 5.2}$$

- What is EEPROM?
- What is Flotox (FLOating gate Tunneling Oxide) EEPROM?

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L} \qquad \text{Section 5.2}$$

$$C_1 = .0034$$
 Section 5.2

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L} \qquad \text{Section 5.2}$$

$$\pi_{T} = 3.8 \qquad \begin{array}{c} \text{Section 5.8} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

 $\lambda_{CVC} = 0$  For all other devices

Parameter

All Other Model Parameters

Refer to Section 5.8 Section 5.9 Section 5.10 Page 5-5

82

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L} \qquad Se$$

Section 5.2

| C <sub>2</sub> | = | .014 |
|----------------|---|------|
|----------------|---|------|

Section 5.9

| All Other Mo                                                                  | del Parameters             |  |  |  |
|-------------------------------------------------------------------------------|----------------------------|--|--|--|
| Parameter                                                                     | Reter to                   |  |  |  |
| *т<br>С <sub>2</sub>                                                          | Section 5.8<br>Section 5.9 |  |  |  |
| <sup>π</sup> E <sup>, π</sup> Q <sup>, π</sup> L<br>λ <sub>eve</sub> (EEPROMS | Section 5.10<br>Page 5-5   |  |  |  |
| only)                                                                         |                            |  |  |  |
| λ <sub>cyc</sub> = 0 For all other devices                                    |                            |  |  |  |

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L} \qquad \text{Section 5.2}$$

 $\pi_{E} = 5.0$  Section 5.10  $\pi_{L} = 1.0$  Section 5.10  $\pi_{Q} = 2.0$  Section 5.10

| All Other Mo                                                                                                             | del Parameters                                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Parameter                                                                                                                | Refer to                                               |  |  |
| <sup>π</sup> T<br>C <sub>2</sub><br><sup>π</sup> E· <sup>π</sup> Q- <sup>π</sup> L<br><sup>λ</sup> CyC (EEPROMS<br>only) | Section 5.8<br>Section 5.9<br>Section 5.10<br>Page 5-5 |  |  |
| λ <sub>cyc</sub> = 0 For all other devices                                                                               |                                                        |  |  |

### Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T<sub>J</sub> of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{cyc}) \pi_{Q} \pi_{L}$$

Section 5.2

λ<sub>cyc</sub> = .38

Section 5.2:

$$\lambda_{cyc} = \begin{bmatrix} A_1 & B_1 + \frac{A_2 B_2}{\pi_Q} \end{bmatrix} \pi_{ECC}$$

$$A_2 = B_2 = 0 \text{ for Flotox}$$
Assume No ECC,  $\pi_{ECC} = 1$ 

$$A_1 = .1, 7K \le C \le 15K \text{ Entry}$$

$$B_1 = 3.8 \quad (\text{Use Equation 1 at bottom of } B_1 \text{ and } B_2 \text{ Table})$$

$$\lambda_{cyc} = A_1 B_1 = (.1)(3.8) = .38$$

| All Other Model Parameters                                                                                               |                                                        |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Parameter                                                                                                                | Refer to                                               |
| <sup>π</sup> T<br>C <sub>2</sub><br><sup>π</sup> E· <sup>x</sup> Q· <sup>π</sup> L<br>λ <sub>CyC</sub> (EEPROMS<br>only) | Section 5.8<br>Section 5.9<br>Section 5.10<br>Page 5-5 |
| λ <sub>cyc</sub> = 0 For all other devices                                                                               |                                                        |

## There are more sections and subsections

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT



NOT MEASUREMENT SENSITIVE MIL-HDBK-217F <u>2 DECEMBER 1991</u> SUPERSEDING MIL-HDBK-217E, Notice 1 2 January 1990

RADC-TR-90-72 Final Technical Report May 1990

- Microcircuits (Sec. 5)
- Discrete Semiconductors (Sec 6) **Diode, transistors**, etc
- Resistors (Sec. 9)
- Capacitors (Sec. 10)
- Inductive Devices (Sec. 11)
- Rotating Devices Motors (Sec. 12)
- Relays (Sec. 13)
- Switches (Sec. 14)
- Connectors (Sec. 15)
- And more !!!

## Section 6

### 6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

**DIODES, LOW FREQUENCY**  $\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_O \pi_F$  Failures/10<sup>6</sup> Hours 6.1 6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)  $\lambda_p = \lambda_b \pi_T \pi_A \pi_B \pi_O \pi_F$  Failures/10<sup>6</sup> Hours TRANSISTORS, LOW FREQUENCY, BIPOLAR 6.3  $\lambda_p = \lambda_p \pi_T \pi_A \pi_B \pi_S \pi_O \pi_F$  Failures/10<sup>6</sup> Hours TRANSISTORS, LOW FREQUENCY, SI FET 6.4  $\lambda_p = \lambda_b \pi_T \pi_A \pi_O \pi_F$  Failures/10<sup>6</sup> Hours 6.5  $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm O} \pi_{\rm F}$  Failures/10<sup>6</sup> Hours TRANSISTORS, UNIJUNCTION 6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR  $\lambda_p = \lambda_b \pi_T \pi_B \pi_S \pi_O \pi_F$  Failures/10<sup>6</sup> Hours TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR 6.7  $\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_O \pi_F$  Failures/10<sup>6</sup> Hours 93

## Section 9

### 9.0 RESISTORS, INTRODUCTION

**RESISTORS, FIXED, COMPOSITION**  $\lambda_p = \lambda_b \pi_B \pi_O \pi_F$  Failures/10<sup>6</sup> Hours 9.1 **RESISTORS, FIXED, FILM**  $\lambda_p = \lambda_b \pi_B \pi_O \pi_F$  Failures/10<sup>6</sup> Hours 9.2 RESISTORS, FIXED, FILM, POWER  $\lambda_p = \lambda_b \pi_B \pi_O \pi_E$  Failures/10<sup>6</sup> Hours 9.3 9.4 RESISTORS, NETWORK, FIXED, FILM  $\lambda_p = .00006 \pi_T \pi_{NR} \pi_0 \pi_F$  Failures/10<sup>6</sup> Hours  $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm B} \pi_{\rm O} \pi_{\rm F}$  Failures/10<sup>6</sup> Hours 9.5 RESISTORS, FIXED, WIREWOUND RESISTORS, FIXED, WIREWOUND, POWER 9.6  $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm B} \pi_{\rm O} \pi_{\rm E}$  Failures/10<sup>6</sup> Hours RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED 9.7  $\lambda_p = \lambda_b \pi_B \pi_O \pi_E$  Failures/10<sup>6</sup> Hours 9.8 RESISTORS, THERMISTOR  $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm O} \pi_{\rm F}$  Failures/10<sup>6</sup> Hours 94

## Section 10

- **CAPACITORS, FIXED, PAPER, BY-PASS**  $\lambda_p = \lambda_b \pi_C \sqrt{\pi_0} \pi_F$  Failures/10<sup>6</sup> Hours 10.1
- CAPACITORS, FIXED, PAPER, FEED-THROUGH 10.2
- 10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM
- 10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC
- 10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC
- 10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC
- 10.7 CAPACITORS, FIXED, MICA
- 10.8 CAPACITORS, FIXED, MICA, BUTTON
- 10.9 CAPACITORS, FIXED, GLASS
- 10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE
- CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP 10.11 10.20 CAPACITORS, EXAMPLE

## Sections 11 & 12

11.1INDUCTIVE DEVICES, TRANSFORMERS $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10<sup>6</sup> Hours11.2INDUCTIVE DEVICES, COILS $\lambda_p = \lambda_b \pi_C \pi_Q \pi_E$ Failures/10<sup>6</sup> Hours

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

**12.1** ROTATING DEVICES, MOTORS 
$$\lambda_p = \left[\frac{t^2}{\alpha_B^3} + \frac{1}{\alpha_W}\right] \times 10^6$$
 Failures/10<sup>6</sup> Hours

## Sections 13 & 14

13.1 RELAYS, MECHANICAL  $\lambda_p = \lambda_b \pi_L \pi_C \pi_{CYC} \pi_F \pi_Q \pi_E$  Failures/10<sup>6</sup> Hours

**13.2 RELAYS, SOLID STATE AND TIME DELAY**  $\lambda_{D} = \lambda_{D} \pi_{Q} \pi_{E}$  Failures/10<sup>6</sup> Hours

#### 14.1 SWITCHES, TOGGLE OR PUSHBUTTON

 $\lambda_p = \lambda_b \pi_{CYC} \pi_L \pi_C \pi_E$  Failures/10<sup>6</sup> Hours

- 14.2 SWITCHES, BASIC SENSITIVE
- 14.3 SWITCHES, ROTARY
- 14.5 SWITCHES, CIRCUIT BREAKERS

## Sections 15 & 16

### 15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

 $\lambda_p = \lambda_b \pi_K \pi_P \pi_E$  Failures/10<sup>6</sup> Hours

### 15.2 CONNECTORS, PRINTED CIRCUIT BOARD

#### 15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

 $\lambda_p = \lambda_b \pi_P \pi_E$  Failures/10<sup>6</sup> Hours

### 16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

 $\lambda_p = \lambda_b [N_1 \pi_C + N_2 (\pi_C + 13)] \pi_Q \pi_E$  Failures/10<sup>6</sup> Hours

## Sections 17 - 23

- 17.1 CONNECTIONS  $\lambda_D = \lambda_D \pi_Q \pi_E$  Failures/10<sup>6</sup> Hours
- 18.1 METERS, PANEL  $\lambda_p = \lambda_b \pi_A \pi_F \pi_Q \pi_E$  Failures/10<sup>6</sup> Hours

<u>19.1 QUARTZ CRYSTALS</u>  $\lambda_p = \lambda_b \pi_O \pi_F$  Failures/10<sup>6</sup> Hours

<u>20.1 LAMPS</u>  $\lambda_p = \lambda_b \pi_U \pi_A \pi_E$  Failures/10<sup>6</sup> Hours

#### 21.1 ELECTRONIC FILTERS, NON-TUNABLE

 $\lambda_p = \lambda_b \pi_Q \pi_E$  Failures/10<sup>6</sup> Hours

<u>22.1</u> FUSES  $\lambda_p = \lambda_b \pi_E$  Failures/10<sup>6</sup> Hours

#### 23.1 MISCELLANEOUS PARTS

99

## Failure Rate Determination – Class Project

- Failure Rate Calculations for:
  - The popular microcontroller board Arduino UNO is built on Atmel microcontroller ATmega328. Referring the Atmel Microcontroller datasheet and the MIL-HDBK-217 manual, determine the failure rate of the ATmega328 microcontroller
  - 2. Texas Instrument's TLC2254M is Quad micro-power operational amplifier, and is QML certified for Military and Defense Application. Determine the failure rate of TLC2254M by referring MIL-HDBK-217 and TLC2254M datasheet from Texas Instrument. Note that TLC2254M is a Hybrid IC with numerous resistors, transistors, diodes, and capacitors, which all are to be considered in determining the failure rate
- Report should have details steps with explanations and justifications.
- Report Submission Due: TBD





