1 Safety-Critical Computer System Design and Evaluation -- Overview

Instructor: Dr. Charles Kim

Electrical and Computer Engineering
Howard University

www.mwftr.com/CS2.html
Safety-Critical Computer System

- “Safety-Critical Computer System” applies to wide family of applications
 - Failure can lead to injury, death, property and environmental damage
 - Airliners
 - Small manufacturing facilities
Computer Control System

Operator → Action

Sensors:
- Temp
- Pressure
- Motor
- Light

Actuators

Controller

Interface

Software

Computer

Operator
Computer provides real-time control or monitoring of an application ("plant, process"):
- Chemical process
- Aircraft in flight
- Automobile anti-skid brake
- Artificial heart
- Production assembly line

Computer communicates with application through sensors ("field instrumentation") and effectors ("actuators")
- Sensors: let the computer know what is going on in the application
- Effectors: allow the computer to control the physical parameters in the application based on the sensed information

Operator – human(s) overseeing and managing the function of the overall system **AND/OR** providing input action ("sensor" input) to the system
Sensors and Actuators of Cars--- Example
Computer Control Systems vs. Computer Safety Systems

1 Computer Control System:
- Usual computer control system employed to actively control a safety-critical application by continuously monitoring and issuing controls

2 Computer Safety Systems
- Same or similar computer system which passively monitors a safety-critical application
 - The system is continuously monitored but controls are issued only when the application enters a dangerous state

The design and evaluation method applies to both of the systems
1 Design Requirements

- A set of requirements to control or monitor an application
- Generally divided into 2 parts
 - A set of functional and operational requirements that are not directly safety-related
 - A set of safety-related requirement that the system not fail and produce an unsafe condition
- Example in an industrial gas furnace
 - Functional/operational requirement: control gas flow from operator input to maintain temperature profile
 - Safety requirement: the system should not fail and produce an over-temperature condition (See next slide)
Example – Collision Avoidance System

- Functional/Operational Requirements
- Safety Requirements
Example --- Unintended Acceleration

• Change in control to avoid UA
2 Safety Requirements

- System Safety
 - Not a simple matter of meeting written specifications
 - Instead, design effort to make a system safe
 - It requires a coordinated activities, called “system safety”
 - System safety involves 4 key elements:
 - **Addresses the system life cycle**: design, research, development, test, evaluation, production, deployment, operations, and disposal
 - **Requires a distinct system management effort**: tracking for verifying all safety issues are resolved amid personnel changes and safety-related changes
 - **Multidisciplinary effort**: hardware and software engineers, reliability and risk analysts, test engineers and technicians
 - **Compliance to safety standards**: MIL-STD-882D (military), IEC 61508 (Commercial)
MIL-STD-882D

- “Standard Practice for System Safety”
- Issued by DoD in February 2000
- Original version: MIL-STD-882A in 1960s (for aerospace applications)
- Presents basic requirements that apply to computer control systems and computer safety systems
- Contains both requirements (must be followed) and guidance (to aid user in applying standard)
- Intends to be supplemented with appropriate industry standards in establishing an overall system safety program
IEC 61508

- **IEC 61508**
 - “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems”
 - Approved by International Electrotechnical Commission (IEC) in 2000
 - Addresses safety-critical computer control systems and computer safety systems
 - Defines functional safety as: “part of the overall safety relating to the EUC (Equipment Under Control) and the EUC control system which depends on the correct functioning of the E/E/PE safety-related systems, other technology safety-related systems and external risk reduction facilities.”
Concepts of Mishaps and Mishap Risk

- **Mishap (“Accident”)**
 - An unplanned event or series of events resulting in death, injury, occupational illness, damage to or loss of equipment or property, or damage to environment (MIL-STD-882D)
 - Airliner crash; Nuclear meltdown; Refinery fire; Toxic gas release; Natural gas explosion; Train Derailment; Oil Spill.

- **Mishap Risk**
 - An expression of the impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence (MIL-STD-882D)
 - Possibility of automobile accident
 - Think about not only severity, but also likelihood that the severity could happen

- **Acceptable Risk**
 - MIL-STD-882D has Four Categories:
 - Negligible
 - Marginal
 - Critical
 - Catastrophic

- **Probability Expression - EXAMPLE**
 - Computer Control System: “The catastrophic system mishap rate shall not exceed 1.13×10^{-n} per operational hour.”
 - Computer Safety System: “The catastrophic system mishap rate shall not exceed 1.13×10^{-n} per demand.”

<table>
<thead>
<tr>
<th>HAZARD RISK ASSESSMENT MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of Occurrence</td>
</tr>
<tr>
<td>(A) Frequent</td>
</tr>
<tr>
<td>(B) Probable</td>
</tr>
<tr>
<td>(C) Occasional</td>
</tr>
<tr>
<td>(D) Remote</td>
</tr>
<tr>
<td>(E) Improbable</td>
</tr>
</tbody>
</table>

- Unacceptable
- High
- Medium
- Low
IEC 61508 SIL and Risk

- Safety Integrity ↔ Risk (MIL-STD-882D)
 - Definition: The probability of a system satisfactorily performing the required safety functions under all stated conditions within stated period of time

- IEC 61508 Safety Integrity Levels (SIL)

<table>
<thead>
<tr>
<th>Safety Integrity Level</th>
<th>Consequence of Safety-Related System Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minor property and production protection.</td>
</tr>
<tr>
<td>2</td>
<td>Minor property and production protection. Possible employee injury.</td>
</tr>
<tr>
<td>3</td>
<td>Employee and community protection.</td>
</tr>
<tr>
<td>4</td>
<td>Catastrophic community impact.</td>
</tr>
</tbody>
</table>

- IEC 61508 Sample Quantitative Requirements ↔ Risk Probability

<table>
<thead>
<tr>
<th>Safety Integrity Level</th>
<th>Computer Control System</th>
<th>Computer Safety System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous/high-demand mode of operation (probability of dangerous failure per hour)</td>
<td>Low demand mode of operation (probability of failure to perform its safety functions on demand)</td>
</tr>
<tr>
<td>1</td>
<td>$\geq 10^{-6}$ to $< 10^{-3}$</td>
<td>$\geq 10^{-2}$ to $< 10^{-1}$</td>
</tr>
<tr>
<td>2</td>
<td>$\geq 10^{-7}$ to $< 10^{-6}$</td>
<td>$\geq 10^{-3}$ to $< 10^{-2}$</td>
</tr>
<tr>
<td>3</td>
<td>$\geq 10^{-8}$ to $< 10^{-7}$</td>
<td>$\geq 10^{-4}$ to $< 10^{-3}$</td>
</tr>
<tr>
<td>4</td>
<td>$\geq 10^{-9}$ to $< 10^{-8}$</td>
<td>$\geq 10^{-5}$ to $< 10^{-4}$</td>
</tr>
</tbody>
</table>
Design Process by Standard

• **Overall Design Approach**
 – Design Problem: The design problem is that the computer control and computer safety system might fail to perform correctly with the result that a mishap occur.
 – Design Objective: The design objective is to **reduce the risk** of such mishaps to an acceptable level.
 – Design Approach: Based on MIL-STD-882D by beginning the discussion on mishaps back to their origins --- **Causes**.
Mishaps vs Hazards

• Design concern is with mishaps
• A mishap ("accident") occurs because of the existence of more than 1 hazards
• A hazard is defined as “any real or potential condition that can cause injury, illness, or death to personnel; damage to or loss of a system, equipment or property; or damage to the environment”
Mishaps vs. Hazards

What is the difference between a accident and a hazard?

Matthew Albert
Answered Last

The difference between accident and hazard are:
A person is not pre-warned about an accident. It is an unexpected or unforeseen event.

But a hazard is known well in advance. For instance, if I have a culture of Ebola virus in my lab, I know that if by mistake it is released into the environment, me and many others will be in potential danger. So I take precautions to store it in proper conditions.

To be precise, I know that a hazard is a possible source of danger. Source(s): Another thing: I can hazard a guess, but I can't accident a guess...

Cloe <333

• Car accident in icy condition
Hazards

• Example of Hazards (and Mishaps)
 – Loss of flight control \(\rightarrow \) (__________)
 – Loos of nuclear reactor coolant \(\rightarrow \) (_______)
 – Use of flammable substances \(\rightarrow \) (_______)
 – Train passing through populated area carrying toxic liquid \(\rightarrow \) (__________________)
 – Presence of natural gas \(\rightarrow \) (_______)

• Hazard Identification: The basic approach of designing a safety-critical computer system is to identify hazards and to mitigate them so that an acceptable level of mishap risk is achieved.
Design Steps for Safety

• System definition
• Hazard identification and analysis
• Mishap risk mitigation
• Mishap risk assessment and acceptance
Design Step 1: System Definition

• For General System
 – Define the physical and functional characteristics of the system
 – Understand people, procedures, facilities, and environment that will be involved

• For Computer System
 – Define and understand the application
 – Define the details of the computer system
 – Define operator functions
 – Include system hardware and software
 – Write software requirements – a structured definition for what will be programmed, step-by-step, into hardware
Software Requirement Spec - Brief

- Types of Requirements
 - Functional requirements
 - Non functional requirements
 - Performance requirements
 - Interface requirements
 - Design constraints
 - Other requirements

- Functional Requirements
 - Transformations (inputs, processing, outputs)
 - Requirements for sequencing and parallelism (dynamic requirements)
 - Data
 - Inputs and Outputs
 - Stored data
 - Transient data
 - Exception handling
 - Nature of function: Mandatory/ Desirable/ Optional / Volatile / Stable

- Performance Requirements
 - Capacity
 - no. of simultaneous users, processing requirements for normal and peak loads, static storage capacity, spare capacity
 - Response time
 - System priorities for users and functions
 - System efficiency
 - Availability
 - Fault recovery

- External Interface Requirements
 - User interfaces
 - eg. if display terminal used, specify required screen formats, menus, report layouts, function keys
 - Hardware interfaces
 - characteristics of the interface between the SW product and HW components of the system
 - Software interfaces
 - specify the use of other SW products eg. OS, DBMS, other SW packages

- Source: Richards/Dublin
Can we make a “system definition” for the entire automotive electronic systems?
System Definition Example Case – Class Activity

- Select a system and do the “system definition” with emphasis on (1) Functional Requirements and (2) External Interface Requirements of Software Requirement Specification.
 - ABS; Electronic Accelerator; Doors and Seat-belts with Instrumentation; Airbag; Collision Avoidance System; Auto-Parking
System Identification Exercise

[with emphasis on Software Requirement Specification]

1. Functional Requirements
2. External Interface Requirement

System (Application): Collision Avoidance System (Ex)

1. Functional Requirement
 ...
 ...
 ...
2. External Interface Requirement
Another Tip for Writing

• “A figure is worth a thousand words;” but without words it collapses.

• Figures are for aiding the words and description; therefore, description itself should deliver the message. Use figures only when your description alone cannot accurately deliver the message.

Charles Kim – Howard University
Design Step 2: Hazard Identification and Analysis

• General
 – Identify the hazards associated with the mishaps and determine their causes
 – Use widely known approaches: FTA (fault tree analysis) and FMEA (Failure Modes and Effects Analysis) --- Chapter 5

• Computer Systems
 – Our concern: Hazardous events occur within the application and the system will fail to control it → a mishap ("accident") occurs as a result of failure to control a hazard
 – Mishap Tracking: mishaps are traced to its causes
 – Mishap → Hazard → component failure → sources that cause the failure
 – There are multiple Hazards which may cause a mishap
Simple (single) Hazard Analysis Chart

Mishap

Hazard

Failure

Source of failure (Cause)

ONE OR MORE OF:
- HARDWARE FAULTS
- SOFTWARE FAULTS
- PERSONNEL ERROR
- ENVIRONMENTAL CONDITIONS
- DESIGN INADEQUACIES
- PROCEDURAL DEFICIENCIES
- OTHER CAUSES

Charles Kim – Howard University
Example Hazard Identification/Analysis

System (Application): Reactor Controller

- mishap
 - Reactor Shutdown

- Hazard
 - Cooling System
 - Abnormal Behavior
 - Electricity Outage
Example Hazard Identification/Analysis

System (Application): Reactor Controller

Mishap

Hazard

Failure

Cooling System Abnormal Behavior

Electricity Outage

Cooling S/W Malfunction

Cooling Pump Controller Problem

Diesel Gen Sys Failure

Circuit Failure
Example Hazard Identification/Analysis

System (Application): Reactor Controller

Mishap: (Reactor Shutdown)

Hazard: (Cooling System abnormal Behavior) (Electricity outage)

Failure: (Cooling S/W mal function) (Cooling pump Controller problem) (Diesel Gensys failure) (Circuit failure)

Fault: (Hacking) (Engine oil leak) (Cyber Security Protection fault) (Relay Contact worn out) (Controller board component) (Motor shaft crack) (Maintenance schedule prob.)
System (Application): Reactor Controller

- **Fault**
 - Hacking
 - Cyber Security Protection Failure
 - Controller Board Component
 - Motor shaft crack

- **Hazard**
 - Cooling System (abnormal behavior)
 - Cooling Pump (Controller problem)

- **Failure**
 - Electricity outage
 - Diesel Gen System Failure
 - Circuit Failure
 - Engine oil leak
 - Relay Contact Worn out
 - Maintenance Schedule prob.
Failure vs Fault

• “Failure”
 – A failing to perform a duty or expected action → Mission related
 – The result of an activated fault or other cause
• “Fault”
 – A defect
• Example: Failure vs Fault
 – A system employs computer-actuated safety valve that closes if computer senses a hazardous event
 – Event occurs, computer senses and signals valve to close
 – Valve may experience failure (may not close) due to fault of worn bearing (hardware fault), missing spring (maintenance deficiency), or excessive ambient temperature (environmental condition)
• Severity of Component Fault and Failure
 – NOT Severity of the component fault or failure BUT severity of a mishap a fault may cause
• In safety-critical systems, mishap risks are unacceptable → need mitigation step
Hazard Identification – Class Activity

• Work on the subject we did for “system definition” of an automobile electronic control system
 – 1. Choose 1 mishap ("Accident")
 – 2. Identify at least 2 hazards (potential problems that may lead to, or) associated with the mishap
 – 3. Determine the causes of the hazards
 – 4. List failures
 – 5. Narrow down to component faults
Hazard Identification/Analysis Example

- We do not use FTA or FEMA yet
- System (application): Nuclear Power Plant Safety
 - Mishap: Reactor Shut Down
 - List of Hazards
 - (1) Cooling system abnormal behavior
 - (2) On-site Electricity Outage
 - Fill out the mishap-cause tracking chart for EACH of the mishaps

Charles Kim – Howard University
Simple Mishap Analysis - Example

Nuclear Reactor Shutdown

Cooling System Abnormal Behavior

Cooling System Control S/W failure
Coolant Pump Control Failure
Coolant Valve Operation Failure

MISHAP

HAZARD EVENT

FAILURE
- SENSOR
- EFFECTOR
- COMPUTER HARDWARE
- COMPUTER SOFTWARE
- OPERATOR

FAULTS
- HARDWARE
- SOFTWARE
- PERSONNEL ERROR
- ENVIRONMENTAL CONDITIONS
- DESIGN INADEQUACIES
- PROCEDURAL DEFICIENCIES
- OTHER CAUSES

1 Control S/W design inadequacy
 Should have considered
 Redundant and Diversified S/W for coolant pump control.
2 Entire safety design
 inadequacy -- no provision
 for cyber security
3 Premature worn-out of
 capacitor in the
 coolant pumps and valves
 control board

Charles Kim – Howard University
Hazard Identification – Class Activity

- From the “system definition” of an automobile electronic control system
 - 1. Choose 1 mishap (“Accident”)
 - 2. Identify at least 2 hazards (potential problems that may lead to, or) associated with the mishap
 - 3. Determine the causes of the hazards
 - 4. List failures
 - 5. Narrow down to component faults
- Fill the chart for Each of the Hazards (with the same Mishap)
- Submission of 2 charts
Step 3. Mishap Risk Mitigation

• General Systems
 – MIL-STD-882D requirements specify the approach to be followed for reducing the risk of a given system to an acceptable level.
 – The basic approach is Mishap Risk Mitigation
 • Identify potential mishap risk mitigation alternatives and expected effectiveness of each alternative and method
 – System design order of precedence for mitigating identified hazards
 • Eliminate hazards
 • Incorporate safety devices
 • Provide warning devices
 • Develop procedures and training
Step 3. Mishap Risk Mitigation

- **Computer Systems**
 - 3 mishap risk mitigation measures that together can reduce mishap risk to an acceptable level
 - Improve component reliability and quality (1)
 - Incorporate internal safety and warning devices (2)
 - Incorporate external safety devices (3)
Mishap Risk Mitigation Measures

- Improve Reliability and Quality
 - Improve component reliability: reduce the probability of component failure → reduce the probability of mishap → redundant hardware and software components
 - Exercise quality measures that will avoid or eliminate faults and other sources of component failure

- Incorporate Internal Safety Devices
 - The next line of defense
 - Devices placed inside the computer system
 - Hardware and software

- Incorporate External Safety devices
 - Physical containment
 - Last line of defense
 - Placed outside the computer system

- Applying Mishap Mitigation Measures
 - Apply all the mitigation measures
 - Distribute effort across all three risk mitigation measures in balanced manner
Mishap Mitigation - Example

- Fill out the red boxes from the Hazard Identification and Analysis chart
Mishap Mitigation – Class Activity

• Start from the Hazard Analysis Charts
• Find ways to
 – Improve component reliability and quality
 – Incorporate internal safety and warning devices
 – Incorporate external safety devices
• Fill out the chart for each of the Hazards
• Take 20 minutes
• Submission of 2 charts
Step 4. Mishap Risk Estimation and Acceptance

- Mitigation is an iterative process – with additional design modification until the desired level of acceptable is achieved.
- At each iteration, one needs to know (1) how to estimate mishap risks and (2) what constitutes acceptable level of risk.
- Mishap Risk Estimation (chapter 5):
 - for a given basic system,
 - estimate individual failure probabilities for the systems’ hardware faults, software faults, and systematic failures (e.g., personnel error, design inadequacies, procedural deficiencies, etc.) and
 - then combine these probabilities to arrive at an overall estimate of potential mishap risk.
- Mishap Risk Acceptance
 - Is the mishap risk probability acceptable?
 - Note: Achieving a calculated risk probability less than that required does not guarantee safety: it only indicates that the design (not the final system itself) is safe → validation and verification, testing, simulation, inspections, tests, field trials should be include for assurance.
Subject Organization

Chapter 1 Design Overview

Chapter 2 Computer System Definition

Chapter 3 Determine How Computer Systems Fail

Fail-Safe Requirement

Chapter 4 Fail-Safe Design

Chapter 5 Evaluate Design

Chapter 6 Fail-Operate Design

Fail-Operational Requirement
Assignment #2

• Search and find one (1) computer-system (hardware, software, or both) caused accident which occurred after January 2011, and describe:
 – (1) the computer system (in terms of application, inputs and outputs, and operator),
 – (2) normal (expected) functions and operations of the computer system,
 – (3) guess and list the hazards (which possibly led to) the mishap (accident), and
 – (4) what failures and/or fault in the component of the computer system might cause the hazards.
Assignment #2 – Submission Requirement

• Submit by September 25 (Thursday) – Typed Report
 – A descriptive typed-report of 2 - 3 pages
• Submit by September 29 (Monday) 9:00pm – Slide File (ppt or pptx)
 – 6 slides:
 • p1 - Brief on the accident (with Title, Name, and ID);
 • p2 - Computer System;
 • p3 - Normal functions and operations of the computer system;
 • p4- List of hazards and description;
 • p5- Failures and faults that might lead to the hazards; and
 • p6- Conclusions

• September 30 (Tuesday)
 – Invited Presentation of selected works
Grading Points

• Grading/Score points (100%)
 – Is this truly computer-caused mishap? (100 or 0)
 • Does the first paragraph of the report satisfactorily summarize the entire report? (20%)
 • Is the computer system well researched and satisfactorily described? (20%)
 • Are functional and operational behaviors of the computer system under normal condition well described? (20%)
 • Are the hazards adequately listed and described? (20%)
 • Are the failures/faults adequately described which might lead to the hazards? (20%)
 – Presentation points (extra 25%)