Interactive Light Canvas of LEDs by Cellular Automata

Charles Kim

ckimson@gmail.com

Electrical and Computer Engineering Howard University
Washington, DC 20059

LED Lighting Installations

All Architectural Lighting Installations

111 Buckingham Palace Road

27 Knightsbridge

33 Restaurant & Lounge

Amara Beach Resort Aspire Tower Hotel

Ben Franklin Bridge

Berkeley Homes Tower at Tabard Square

Boathouse Row

Boston Residence

Boston Symphony Hall

Brooklyn Borough Hall, Con Edison

Brunswick Zone

Caisse Des Depots Et Consignation

Capitol Mall

Casa Grijalva

"the big picture" Lighting Installation

- Xuanwu Lake Park in Nanjing, China
- 560 000 LEDs
- Italian International Light Sculpture Art Festival

LED Light Tunnel

National Gallery of Art in Washington DC, "LED light tunnel"

 "The custom designed software also has an element of chance built into it, so it's unlikely that anyone will see the

same routine twice."

GreenPix, China

- GreenPix Zero Energy
 Media Wall
 - uses thousands solar photovoltaic capture cells
 - an array of computercontrolled LEDs.
 - constructed for visitors attending the 2008 Beijing Olympics,
 - located in the Xicui
 entertainment complex,
 near the site of the games.

The Grand Indonesia Tower (Jakarta, Indonesia.)

Power Station, Brussels

Rockefeller Center, NY

More

Further more

LED Lighting System

Characteristics of Cellular Automata (CA)

- They consist of a discrete lattice ("array") of sites ("cells")
- They evolve in discrete time steps
- Each site takes on a finite set of possible values
- The value of each site evolves, simultaneously, according to the same deterministic rules
- The rules for the evolution of a site depend only on a local neighborhood of sites around it.

1-dimension CA example

- Elementary CA:
 - Site values: 1 or 0 ("base 2")
 - "neighborhood": the site itself and the sites
 immediately adjacent to it on the left and right
- Modulo 2 rule case

A rule: Sum modulo 2 of its two neighbors

General rules for 1-dimension CA example

A rule is described by 8-digit binary numbers

• There are 2⁸=256 possible distinct CA rules

 y_{Ts}

1-dim CA with 3 site values (0,1,and 2)

A Simple Rule

```
SUM: 6 5 4 3 2 1 0
```

 x_{t+1} : 2 1 0 1 2 1 2 (Example)

y_{Ts}

General Rules

222 221 220 212 211 210 202 201 200 122 121 120 112 111 110 102 101 100 022 021 ...

If we ignore the current site's status in the rule formation, it reduces to: $22\ 21\ 20\ 12\ 11\ 10\ 02\ 01\ 00\ \ (9\ kinds)$

Then, there are only $3^9 = 19683$ possible rules.

1-d CA with 4 site values (0, 1, 2, and 3)

General Rule

If we ignore the current site's status in the rule formation, it reduces to:

```
33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 (16 kinds)
```

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Then, there are only 4^16 is close to 4.3 billion possible rules.

2-dim CA with 2 possible values (0,1)

Simple rule by Sum:


```
for xx \in 0...N

for yy \in 0...N

SUM \leftarrow West_{xx, yy} + East_{xx, yy} + North_{xx, yy} + South_{xx, yy}
ZZ_{xx, yy} \leftarrow 0
ZZ_{xx, yy} \leftarrow 1 \quad \text{if} \quad SUM = 0 \lor SUM = 3
x_{t+1} \leftarrow ZZ
```


General Rules

Therefore, there are: 2^16 rules (=65536 rules)

2-dim CA with 3 values (0,1,2)

CA Implementation for LED Array Control

- What are needed?
- 1. Rule Generation and Execution and Synchronization
 - Microcomputer
- 2. Rule Change and Rule Broadcast to all (without using control wire)
 - Power Line Carrier Modem (communication over the DC line which powers LEDs)
- 3. Detection and Recognition of Neighbors
 - Photo/Color Sensors
 - Power Line Communication Modem for Sensor-less Approach –
 Communication is used to know the status of neighbors

Components Needed in each LED Fixture

- 1. LED and LED driving circuit (LED fixture)
- 2. Microprocessor
- 3. Power Line Carrier Modem
- 4. Photo/Color Sensors (optional)

Schematics for one LED Lighting Unit (Color Sensor Option)

2-dim CA Implementation Schematics (Color Sensor Option)

1-dim CA Implementation Schematics (Color Sensor Option)

Hexagon Shape

Square Shape

Sensors

 upward, and
 Light-Passage
 downward

Pattern Transition Simulation Example

Applications

- Architectural Lighting
 - No heavy and bulky wires
 - No heavy structures for the wires/controllers, nor controllers
- Light Artist Community
- Advertisement and Signage Lighting
 - Advertisement and customer attraction
 - Special events
- Design Pattern Code Generation (similar to Smartphone App's) for Light Installers and Manufacturers and Artists

- Interactive 5-side light canvas
- People can select Cellular Automata rules for the canvases via Bluetooth communication
- Good engagement

