#### Chapter 8: ARM Assembly Input/Output with DE1-SoC

#### Selection change in CPUlator -- We will study I/O using the virtual DE1-SoC

#### <u>Architecture</u>: ARMv7 (the same)

#### <u>System</u>: ARMv7 DE1-SoC (New)

#### **CPUlator Computer System Simulator**

CPUlator is a Nios II, ARMv7, and MIPS simulator of a computer system (processor and I/O devices) and debugger that runs in a modern we browser. It is designed as a tool for learning assembly-language programming and computer organization.

To start using CPUlator now, choose a computer system to simulate, then follow the link.

To learn more, try a sample program in the simulator (Help  $\rightarrow$  Sample programs), or see the <u>documentation</u>.

#### Choose a system to simulate

| Any                       | ARMv7 generic           | 1 |
|---------------------------|-------------------------|---|
| Nios II                   | ARMv7 DE1-SoC           |   |
| ARMv7                     | ARMv7 DE1-SoC (v16.1)   |   |
| MIPS32r5                  | Nios II generic         |   |
| MIPS32r5 (no delay slots) | Nios II DE1-SoC         |   |
| MIPS32r6                  | Nios II DE1-SoC (v16.1) |   |
| MIPS32r6 (no delay slots) | Nios II DE2-115         |   |





#### DE1-SoC Devices in CUPlator

| 🖵 Devices                                                                                                                                     | 🖵 Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ LEDs ff200000                                                                                                                               | Parallel port       IRQ 11 ff200060         IRQ 12 ff200060       IRQ 11 ff200060         IRQ 13 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ✓ Switches         ff200040           9         8         7         6         5         4         3         2         1         0         All | 4       3       2       1       0       All         Image: Content of the second s |
| Push buttons         IRQ 73 ff200050           3 2 1 0         All                                                                            | 31       30       29       28       27       26       25       24       23       22       21       20       19       18       17       16       15       14       13       12       11       10       9       8       7       6       5         Image: A straight of the strain straight of the straight of the strain stra                                                                                                                                                                                              |
| Seven-segment displays ff200020                                                                                                               | Q Audio (8 kHz)       IRQ 78 ff203040         Out L:       0 samples       Overflowed: no         Out R:       0 samples       Overflowed: no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JTAG UART         IRQ 80 ff201000                                                                                                             | In L: 6144 samples Underflowed: no overflow<br>In R: 6144 samples Underflowed: no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                               | ▼ VGA pixel buffer     c8000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kead FIFO: 0   Write FIFO: 0                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cortex-A9 Private Timer         IRQ 29 fffec600           0         Once         Stop         TO=0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cortex-A9 Watchdog Timer       IRQ 30 fffec620         0       Once       Stop       TO=0       RST=0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## DE1-SoC Memory Map

| Base Address | End Address | I/O Peripheral                   |            |            |                           |
|--------------|-------------|----------------------------------|------------|------------|---------------------------|
| 0x00000000   | 0x3FFFFFFF  | DDR3 Memory                      |            |            |                           |
| 0xFFFF0000   | 0xFFFFFFFF  | A9 On-chip Memory                |            |            |                           |
| 0xC0000000   | 0xC3FFFFFF  | SDRAM                            |            |            |                           |
| 0xC8000000   | 0xC803FFFF  | FPGA On-chip Memory              |            |            |                           |
| 0xC9000000   | 0xC9001FFF  | FPGA On-chip Memory Character Bu | ffer       |            |                           |
| 0xFF200000   | 0xFF20000F  | Red LEDs                         |            |            |                           |
| 0xFF200020   | 0xFF20002F  | 7-segment HEX3-HEX0 Displays     | 0xFF203020 | 0xFF20302F | Pixel Buffer Control      |
| 0xFF200030   | 0xFF20003F  | 7-segment HEX5-HEX4 Displays     | 0xFF203030 | 0xFF203037 | Character Buffer Control  |
| 0xFF200040   | 0xFF20004F  | Slider Switches                  | 0xFF203040 | 0xFF20304F | Audio                     |
| 0xFF200050   | 0xFF20005F  | Pushbutton KEYs                  | 0xFF203060 | 0xFF203070 | Video-in                  |
| 0xFF200060   | 0xFF20006F  | JP1 Expansion                    | 0xFF204000 | 0xFF20401F | ADC                       |
| 0xFF200070   | 0xFF20007F  | JP2 Expansion                    | 0xFF709000 | 0xFF709063 | HPS GPIO1                 |
| 0xFF200100   | 0xFF200107  | PS/2                             | 0xFEC04000 | 0xFEC040EC |                           |
| 0xFF200108   | 0xFF20010F  | PS/2 Dual                        | 0xFFC04000 | 0xFFC040FC | HPS 12C0                  |
| 0xFF201000   | 0xFF201007  | JTAG UART                        | 0xFFC08000 | 0xFFC08013 | HPS Timer0                |
| 0xFF201008   | 0xFF20100F  | Second JTAG UART                 | 0xFFC09000 | 0xFFC09013 | HPS Timer1                |
| 0xFF201020   | 0xFF201027  | Infrared (IrDA)                  | 0xFFD00000 | 0xFFD00013 | HPS Timer2                |
| 0xFF202000   | 0xFF20201F  | Interval Timer                   | 0xFFD01000 | 0xFFD01013 | HPS Timer3                |
| 0xFF202020   | 0xFF20202F  | Second Interval Timer            | 0xFFD0501C | 0xFFD0501F | FPGA Bridge               |
| 0xFF203000   | 0xFF20301F  | Audio/video Configuration        | 0xFFFEC100 | 0xFFFEC1FC | GIC CPU Interface         |
| 0xFF203020   | 0xFF20302F  | Pixel Buffer Control             | 0xFFFFD000 | 0xFFFFDFFC | GIC Distributor Interface |
| 0xFF203030   | 0xFF203037  | Character Buffer Control         |            | 0xFFFFC60F | ADM AO Privata Timor      |
| 0xFF203040   | 0xFF20304F  | Audio                            | 0XFFFEC000 | UXFFFEC00F | AKIVI A9 Private Timer    |
| 0xFF203060   | 0xFF203070  | Video-in                         |            |            |                           |

# DE1-SoC LED blinking

- LEDs --- 10 of them
- Address: 0xFF200000

| Device        | Red LEDs                                 |
|---------------|------------------------------------------|
| Configuration | 32-bit registers                         |
| Input/Output  | Output only                              |
| Address Base  | red LEDs: 0xFF200000                     |
| Address Map   | base - each map directly to the register |



• Example

.equ LED\_REG,0xFF200000

LDR r0, LED\_REG LDR r1, =0X0000001 //Turn on the right-most LED STR r1, [r0]

## DE1-SoC LED blinking

- LEDs --- 10 of them ٠
- Address: 0xFF200000 ٠

| r0   | ff200000 |       |     |
|------|----------|-------|-----|
| r1   | 000002aa |       |     |
| r2   | 000002aa |       |     |
| r3   | 00000000 |       |     |
| r4   | 00000000 |       |     |
| r5   | 00000000 |       |     |
| r6   | 00000000 |       |     |
| r7   | 00000000 |       |     |
| r8   | 000cd94f |       |     |
| r9   | 00000000 |       |     |
| r10  | 00000000 |       |     |
| r11  | 00000000 |       |     |
| r12  | 00000000 |       |     |
| sp   | 00000000 |       |     |
| lr   | 0000001c |       |     |
| рс   | 00000024 |       |     |
| cpsr | 200001d3 | NZCVI | SVC |
| spsr | 00000000 | NZCVI | ?   |

| 🖵 Devices               |        |          |
|-------------------------|--------|----------|
| LEDs                    |        | ff200000 |
|                         |        |          |
| 🖵 Devices               |        |          |
| LEDs                    |        | ff200000 |
|                         |        |          |
| Switches                |        | ff200040 |
| 9 8 7 6 5 4 3 2 1 0 All |        |          |
| Push buttons            | IRQ 73 | ff200050 |
|                         |        |          |
| Seven-segment displays  |        | ff200020 |
| 88888                   |        |          |
| JTAG UART               | IRQ 80 | ff201000 |

# DE1-SoC LED Blinking

- LEDs --- 10 of them
- Address: 0xFF200000
- Q1) Blink only the leftmost (LED 9) and the right-most (LED 0) LEDs
- Q2) Blink LEDs 0,2,4,6, and 8.

```
1 //Example8-2.s
2 //10 Red LEDs in 0xFF200000
3 // 2 second delayed blinking
4 .equ LED,0xFF200000
5 .global _start
6 start:
7
8
      LDR r1, =0x00000201 //lower 10 bits
       //0000 0155 for LEDs 0, 2, 4, 6, 8
9
10
       //0000 01AA for LEDs 1, 3,5, 7, 9
      //0000 0201 for LEDs 0 and 9
11
12
      LDR r0,=LED
       STR r1, [r0]
13
14 again:
      LDR r2, [r0] //read
15
       EOR r3, r1, r2 //modify
16
       STR r3, [r0] //write
17
18
       BL delay
       B again
19
20
21 delay:
22 //manual delay without
23 //using time delay
       LDR r8, =0x200000 //2 seconds
24
25 keep:
26
       SUBS r8, r8, #1
27
       BNE keep
28
       BX lr
```

## DE1-SoC LED by Switches

| Device        | Slider Switches                      |  |
|---------------|--------------------------------------|--|
| Configuration | One 32-bit register                  |  |
| Input/Output  | Input only                           |  |
| Address Base  | 0xFF200040                           |  |
| Address Map   | base - maps directly to the register |  |



```
Slider Switch: 0xFF200040
10 switches used
Bits[31:10] are not used
```

EXAMPLE (reading the switch position: 1/0)

```
.equ SW_REG, 0xFF200040
```

```
LDR r0, =SW_REG
LDR r1, [r0] //Read the SW
```

# DE1-SoC LED by Switches

| 🖵 Devices               |          |
|-------------------------|----------|
| LEDs                    | ff200000 |
|                         |          |
| Switches                | ff200040 |
| 9 8 7 6 5 4 3 2 1 0 All |          |
|                         |          |

| r0   | ff200040 |       |     |
|------|----------|-------|-----|
| r1   | 00000208 |       |     |
| r2   | ff200000 |       |     |
| r3   | 00000201 |       |     |
| r4   | 00000000 |       |     |
| r5   | 00000000 |       |     |
| r6   | 00000000 |       |     |
| r7   | 00000000 |       |     |
| r8   | 0011ccb5 |       |     |
| r9   | 00000000 |       |     |
| r10  | 00000000 |       |     |
| r11  | 00000000 |       |     |
| r12  | 00000000 |       |     |
| sp   | 00000000 |       |     |
| İr   | 00000014 |       |     |
| рс   | 00000020 |       |     |
| cpsr | 200001d3 | NZCVI | SVC |
| spsr | 00000000 | NZCVI | ?   |
|      |          |       |     |

## DE1-SoC 7-Segment Display

- 2 registers with base addresses
- HEX3 HEX0: 0xFF200020
- HEX5 HEX4: 0xFF200030





| Seven-segment displays | ff200020 |
|------------------------|----------|
| 888888                 |          |



# DE1-SoC (Coding Practice)

• Q) Write a code which displays (a) <u>the last 6 digits of</u> <u>your ID</u> and (b) your last (or first) name (up to 6 characters), alternatingly, in the 7-segments with 4 second interval.

## DE1-SoC (7-segment)

 Q) Write a code which displays 0 – 9 on the right-most 7-segment with 1 second time delay.



# DE1-SoC Coding Practice

 Q) Write a code which displays 00 to 99 on the two rightmost 7-segments with 1 second time delay.



17

- VGA Adapter
  - Draw images on the monitor
  - An image: rectangular array of picture elements ("pixel")
  - Each pixel: appears as a dot



| Device         | VGA Adapter                                                                                                                 |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Configuration  | 320x240 pixel resolution, 80x60 character resolution, 16-bit colour                                                         |  |  |  |  |
| Input/Output   | Input and Output                                                                                                            |  |  |  |  |
| Address Base   | Pixel Buffer: 0xC8000000, Character Buffer: 0xC9000000                                                                      |  |  |  |  |
| Address Map    | pixel base+{y[7:0],x[8:0],1'b0} corresponds to pixel (x,y)<br>character base+{y[5:0],x[6:0]} corresponds to character (x,y) |  |  |  |  |
| Initialization | None needed                                                                                                                 |  |  |  |  |
| Interrupts     | None                                                                                                                        |  |  |  |  |
| Hardware Setup | Connect the VGA plug of your monitor to the VGA port of the DE1-SoC                                                         |  |  |  |  |
| Reference      | ADV7123 Video DAC datasheet                                                                                                 |  |  |  |  |

- VGA Adapter
  - Screen size: 240 row (y) x 320 columns(x)
  - Coordinate: (x,y).
    - (0,0) top-left corner
    - (319,239) bottom-right corner





- Pixel Color
  - 16-bit is used to represent the color of a pixel

15 ... 11 10 ... 5 4 ... 0
red green blue
(EX): 0b1111 1000 0000 0000 = 0xF800(Red)
0b0000 0111 1110 0000 = 0x07E0 (Green)
0b0000 0000 0001 1111 = 0x001F (Blue)
0xF81F (purple) 0xFFFF (White)
0x0 (Black) 0x8410 (Gray)

| VGA pixel buffer         c800 | 0000 |
|-------------------------------|------|
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |
|                               |      |

• Pixel Address







- Pixel Address = 0xC8000000 + y[7:0] <<10 + x[8:0] <<1
- (EX)  $(x,y) = (0, 0) \rightarrow Pixel Addr = 0xC8000000$
- $(x,y) = (1,1) \rightarrow Pixel Addr = 0xC80000000 + 0x400 + 0x20$ 
  - $= 0 \times C80000420$
- (x.y)=(319,239) → pixel Addr ??

- Character Buffer
  - Screen: 80 x 60 characters
  - (x,y)=(0,0) top-left corner
  - (x,y)=(79,59) bottom-right corner
- Character buffer address

 31
 ...
 13
 12
 ...
 7
 6
 ...
 0

 11001001000000000
 y
 x
 x



- Character Address= 0xC9000000 + y[5:0]<<7 + x[6:0]</li>
- (EX) (x,y)=(0,0) Character addr = 0xC9000000
- (x,y)=(1,0) Character addr = 0xC9000000 + 0 + 1 = 0xC9000001
- (x,y)=(0,1) Character addr = 0xC9000000 + 0x80 + 0 = 0xC9000080
- (x,y)=(79,59) Character addr = ???

## DE1-SoC VGA Adapter - Practice 1

#### • PRACTICE:

- (a) Place a red dot on (10,10)
- (b) Change the entire screen to Green
- Pixel Color

 15
 ...
 11
 10
 ...
 5
 4
 ...
 0

 red
 green
 blue



- (EX): 0b1111 1000 0000 0000 = 0xF800(Red)
- 0b0000 0111 1110 0000 = 0x07E0 (Green)
- Pixel Address
  - Pixel Address = 0xC8000000 + y[7:0] <<10 + x[8:0] <<1

```
3 //PIXEL address
4 // 240 rows and 320 cols
5 //3 2 1
6 //1098 7654 3210 9876 5432 1098 7654 3210
7 //1100 1000 0000 00yy yyyy yyxx xxxx xxx0
8 //Location = PIXEL + y<<10 + x<<1</pre>
```

## DE1-SoC VGA Adapter - Practice 2

#### • Practice

- (a) Print 'A' on (10,10)
- (b) Print "Hello World!" in the row 10
- Character buffer address



• Character Address= 0xC9000000 + y[5:0]<<7 + x[6:0]

19 //CHARACTER address 20 //Register addr + character buffer 21 //3 2 1 22 //1098 7654 3210 9876 5432 1098 7654 3210 23 //1100 1001 0000 0000 000y yyyy yxxx xxxx 24 // 60 rows (y) x 70 cols (x) 25 //y - vertical from top to bottom 26 //x - horizontal from left to right 27 //Location = VGA + y<<7 + x</pre>

### DE1-SoC VGA Adapter - functions and Code

- Write a function
  - onePixel: place a dot with a given color at a given (x,y) location
  - oneChar: write a character at a given (x,y) location
- Write a code (using above 2 functions) to (a) make the entire screen background Purple and (b) write "Hello World!" in the row 10

# DE1-SoC (Project Idea)

- Display from 0000 to 9999
- Conversion of Roman number and display its decimal equivalent on 7-Seg
- 1 minute timer: 60  $\rightarrow$  0
  - Stop by a SW
  - Resume by another SW
- Digital clock: HH MM SS format on 7-Segment Display.
- Display on the 7-segment display a decimal number which is to the binary number made by the 10 switches (ON - 1, OFF - 0)
- Sum of decimal digits and display on the VGA monitor
- Conversion of Roman number and display its decimal equivalent on the Monitor

- JTAG UART Box simulates (a) keyboard and (b) display
- Our objective
  - Write (and thus display) a string (in the memory) on the JTAG (Joint Test Action Group) UART box.
  - Read a string from the JTAG UART box in to the memory
- UART base address: 0xFF201000

| Device         | JTAG UART  |     |                                                                                                                                                                                                                                                             |  |  |  |  |
|----------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Input/Output   | Both       |     |                                                                                                                                                                                                                                                             |  |  |  |  |
| Address Base   | 0xFF201000 |     |                                                                                                                                                                                                                                                             |  |  |  |  |
| Address Map    | Address    | R/W | Description                                                                                                                                                                                                                                                 |  |  |  |  |
|                | base       | R/W | Data Register<br>31:16 - Number of characters available to read (before this read )<br>15 - read data is valid<br>7:0 - the data itself                                                                                                                     |  |  |  |  |
|                | base+4     | R/W | Control Register<br>31:16 - Spaces available for writing<br>10 - AC (has value of 1 if JTAG UART has been accessed by host,<br>9 - Write interrupt is pending<br>8 - Read interrupt is pending<br>1 - Enable write interrupts<br>0 - Enable read interrupts |  |  |  |  |
| Initialization | None       |     |                                                                                                                                                                                                                                                             |  |  |  |  |

- <u>Writing a string</u> (Which is stored in the data section by .asciz (which is ended with null 0. Null 0 is automatically added.):
  - Read a character (i.e., a Byte) at a time
  - Store the byte to the UART register
  - Repeat until the read character is null 0.
- <u>Reading a string</u> from JTAG UART Box
  - In the code, make a space for the string in the memory by .space
  - Need to do:
    - Size (buffer\_ of the string in Byte  $\rightarrow$  80
    - UART "data valid" bit which indicates that new data is in or not: bit 15

- Writing a string
  - Read a character (i.e., a Byte) at a time
  - Store the byte to the UART address
  - Repeat until the read character is null 0.

| Seven-segment displays  |               |        | ff200020 |
|-------------------------|---------------|--------|----------|
| 888888                  |               |        |          |
| JTAG UART               |               | IRQ 80 | ff201000 |
| I am typing now.        |               |        |          |
|                         |               |        |          |
|                         |               |        |          |
|                         |               |        |          |
|                         |               |        |          |
|                         |               |        |          |
|                         |               |        | >        |
| Road EIEO: 0            | Write EIEO: 0 |        |          |
|                         | WHILE PIPO. 0 |        |          |
| Cortex-A9 Private Timer |               | IRO 29 | fffec600 |

- <u>Reading a string</u> from JTAG UART Box
  - Make a space (or buffer) for the string in the memory by .space
  - Size of the string in Byte  $\rightarrow$  80
  - Check the "data valid" bit (bit 15)→ Read UART register and check the bit 15 (remember bits 7-0 hold the data!!).

DE1-SoC UART(Universal Async. Receiver/Transmitter)

<u>Reading a string</u> from JTAG UART Box

00000040

- Before running the code, type a string in the JTAG UART BOX (main display)
- It does not display as you type; instead, it's ASCII code (in hex number) is displayed in the "Read FIFO" tray.



676e6964

strbvs r6, [lr, -r4, ROR #18]

# DE1-SoC (Project Idea)

- Display from 0000 to 9999
- Conversion of Roman number and display its decimal equivalent on 7-Seg
- 1 minute timer: 60  $\rightarrow$  0
  - Stop by a SW
  - Resume by another SW
- Digital clock: HH MM SS format on 7-Segment Display.
- Display on the 7-segment display a decimal number which is to the binary number made by the 10 switches (ON - 1, OFF - 0)
- Sum of decimal digits and display on the VGA monitor
- Conversion of Roman number and display its decimal equivalent on the Monitor