
Chapter 8: ARM Assembly Input/Output with DE1-SoC

Selection change in CPUlator -- We will study I/O using the virtual DE1-SoC
Architecture: ARMv7 (the same)
System: ARMv7 DE1-SoC (New)

1

DE1-SoC

2

DE1-SoC Schematic Diagram

3

DE1-SoC Devices in CUPlator

4

DE1-SoC Memory Map

5

DE1-SoC LED blinking
• LEDs --- 10 of them
• Address: 0xFF200000

• Example
.equ LED_REG,0xFF200000

LDR r0, LED_REG
LDR r1, =0X0000001 //Turn on the right-most LED
STR r1, [r0]

6

DE1-SoC LED blinking
• LEDs --- 10 of them
• Address: 0xFF200000

7

DE1-SoC LED Blinking
• LEDs --- 10 of them
• Address: 0xFF200000

• Q1) Blink only the left-
most (LED 9) and the
right-most (LED 0) LEDs

• Q2) Blink LEDs 0,2,4,6,
and 8.

8

DE1-SoC LED by Switches

9

Slider Switch: 0xFF200040
10 switches used
Bits[31:10] are not used

EXAMPLE (reading the switch position: 1/0)

.equ SW_REG, 0xFF200040

LDR r0, =SW_REG
LDR r1, [r0] //Read the SW

DE1-SoC LED by Switches

10

DE1-SoC 7-Segment Display
• 2 registers with base addresses
• HEX3 – HEX0: 0xFF200020
• HEX5 – HEX4: 0xFF200030

11

DE1-SoC 7-Segment Display

12

DE1-SoC 7-Segment Display
• 2 registers with base addresses

• HEX3 – HEX0: 0xFF200020

• HEX5 – HEX4: 0xFF200030

• EX) Display “1” and “2” in HEX0 display

13

DE1-SoC 7-Segment Display

• Q) Write a code which Displays
“1867” and “2020” alternatingly.

14

DE1-SoC (Coding Practice)
• Q) Write a code which displays (a) the last 6 digits of

your ID and (b) your last (or first) name (up to 6
characters), alternatingly, in the 7-segments with 4
second interval.

15

DE1-SoC (7-segment)
• Q) Write a code which displays 0 – 9 on the right-most

7-segment with 1 second time delay.

16

DE1-SoC Coding Practice
• Q) Write a code which displays 00 to 99 on the two right-

most 7-segments with 1 second time delay.

17

DE1-SoC VGA Adapter
• VGA Adapter

• Draw images on the monitor
• An image: rectangular array of

picture elements (“pixel”)
• Each pixel: appears as a dot

18

DE1-SoC VGA Adapter
• VGA Adapter

• Screen size: 240 row (y) x 320 columns(x)
• Coordinate: (x,y).

• (0,0) top-left corner
• (319,239) bottom-right corner

19

DE1-SoC VGA Adapter
• Pixel Color

• 16-bit is used to represent the color of a pixel

• (EX): 0b1111 1000 0000 0000 = 0xF800(Red)
• 0b0000 0111 1110 0000 = 0x07E0 (Green)
• 0b0000 0000 0001 1111 = 0x001F (Blue)
• 0xF81F (purple) 0xFFFF (White)
• 0x0 (Black) 0x8410 (Gray)

20

DE1-SoC VGA Adapter
• Pixel Address

• Pixel Address = 0xC8000000 + y[7:0] <<10 + x[8:0] <<1
• (EX) (x,y) = (0, 0)  Pixel Addr = 0xC8000000
• (x,y) = (1,1)  Pixel Addr = 0xC80000000 + 0x400 + 0x20
• = 0xC80000420
• (x.y)=(319,239)  pixel Addr ??

21

DE1-SoC VGA Adapter
• Character Buffer

• Screen: 80 x 60 characters
• (x,y)=(0,0) top-left corner
• (x,y)=(79,59) bottom-right corner

• Character buffer address

• Character Address= 0xC9000000 + y[5:0]<<7 + x[6:0]
• (EX) (x,y)=(0,0) Character addr = 0xC9000000
• (x,y)=(1,0) Character addr = 0xC9000000 + 0 + 1 = 0xC9000001
• (x,y)=(0,1) Character addr = 0xC9000000 + 0x80 + 0 =

0xC9000080
• (x,y)=(79,59) Character addr = ???

22

DE1-SoC VGA Adapter – Practice 1
• PRACTICE:

• (a) Place a red dot on (10,10)
• (b) Change the entire screen to Green

• Pixel Color

• (EX): 0b1111 1000 0000 0000 = 0xF800(Red)
• 0b0000 0111 1110 0000 = 0x07E0 (Green)

• Pixel Address
• Pixel Address = 0xC8000000 + y[7:0] <<10 + x[8:0] <<1

23

DE1-SoC VGA Adapter – Practice 2
• Practice

• (a) Print ‘A’ on (10,10)
• (b) Print “Hello World!” in the row 10

• Character buffer address

• Character Address= 0xC9000000 + y[5:0]<<7 + x[6:0]

24

DE1-SoC VGA Adapter – functions and Code
• Write a function

• onePixel: place a dot with a given color at a given (x,y)
location

• oneChar: write a character at a given (x,y) location

• Write a code (using above 2 functions) to (a) make the entire
screen background Purple and (b) write “Hello World!” in the
row 10

25

DE1-SoC (Project Idea)
• Display from 0000 to 9999
• Conversion of Roman number and display its decimal

equivalent on 7-Seg
• 1 minute timer: 60  0

• Stop by a SW
• Resume by another SW

• Digital clock: HH MM SS format on 7-Segment Display.
• Display on the 7-segment display a decimal number which is

to the binary number made by the 10 switches (ON – 1, OFF
– 0)

• Sum of decimal digits and display on the VGA monitor
• Conversion of Roman number and display its decimal

equivalent on the Monitor

26

DE1-SoC UART(Universal Async. Receiver/Transmitter)

27

• JTAG UART Box simulates (a) keyboard and (b) display
• Our objective

• Write (and thus display) a string (in the memory) on the
JTAG (Joint Test Action Group) UART box.

• Read a string from the JTAG UART box in to the memory
• UART base address: 0xFF201000

DE1-SoC UART(Universal Async. Receiver/Transmitter)

28

• Writing a string (Which is stored in the data section by
.asciz (which is ended with null 0. Null 0 is
automatically added.):
• Read a character (i.e., a Byte) at a time
• Store the byte to the UART register
• Repeat until the read character is null 0.

• Reading a string from JTAG UART Box
• In the code, make a space for the string in the memory by

.space
• Need to do:

• Size (buffer_ of the string in Byte  80
• UART “data valid” bit which indicates that new data is in or

not: bit 15

DE1-SoC UART(Universal Async. Receiver/Transmitter)

29

• Writing a string
• Read a character (i.e., a Byte) at a time
• Store the byte to the UART address
• Repeat until the read character is null 0.

DE1-SoC UART(Universal Async. Receiver/Transmitter)
• Reading a string from JTAG UART Box

• Make a space (or buffer) for the string in the memory by .space
• Size of the string in Byte  80
• Check the “data valid” bit (bit 15) Read UART register and check the bit

15 (remember bits 7-0 hold the data!!).

30

DE1-SoC UART(Universal Async. Receiver/Transmitter)
• Reading a string from JTAG UART Box

• Before running the code, type a string in the JTAG UART BOX
(main display)

• It does not display as you type; instead, it’s ASCII code
(in hex number) is displayed in the “Read FIFO” tray.

Now run the code

Result:

31

DE1-SoC (Project Idea)
• Display from 0000 to 9999
• Conversion of Roman number and display its decimal

equivalent on 7-Seg
• 1 minute timer: 60  0

• Stop by a SW
• Resume by another SW

• Digital clock: HH MM SS format on 7-Segment Display.
• Display on the 7-segment display a decimal number which is

to the binary number made by the 10 switches (ON – 1, OFF
– 0)

• Sum of decimal digits and display on the VGA monitor
• Conversion of Roman number and display its decimal

equivalent on the Monitor

32

