
Chapter 6: Memory Access and Stack
• Indexed Addressing Mode
• Usual Format: LDR Rd, [Rx] or STR Rx, [Rd]
• [Rx] in LDR & [Rd] in STR: “index register” which holds the

pointer i.e., the base address
• Advanced Indexed Addressing: allows modification of the value

in the index register (“base + offset” addressing mode)
• Indexed Addressing Modes (WB* = “Write back”)

• Offset of Fixed value vs. Offset of Shifted Register

1

Pre-index mode with fixed offset
• FORMAT: LDR Rd, [Rm, #k] // immediate number

• Effective Address: EA = Rm + k
• After instruction: Rm  Rm

Example)Write a code which stores contents of R5 to the location
0x10000 0000 to 0X1000 000F using pre-indexed addressing mode with
fixed offset. R5 = 0x55667788.

2

Pre-index Writeback mode
• FORMAT: LDR Rd, [Rm, #k]! // exclamation mark (!)

• Effective Address: EA = Rm + k
• After instruction: Rm  Rm + k

Example)Write a code which stores contents of R5 to the location
0x20000 0000 to 0X2000 000F using pre-index writeback mode.
R5 = 0x99AABBCC

3

Post-index mode
• FORMAT: LDR Rd,[Rm], #k

• Effective Address: EA = Rm
• After instruction: Rm  Rm + k

Example)Write a code which stores contents of R5 to the location
0x20000 0000 to 0X2000 000F using post-index mode. R5 = 0x99AABBCC

4

Pre-index with offset register
• FORMAT: LDR Rd,[Rm, Rn]

• Effective Address: EA = Rm + Rd
• After instruction: Rm  Rm

5

Pre-index with shifted register
• FORMAT: LDR Rd, [Rm, Rn,<Shift>]

• Effective Address: EA = Rm + Rn<Shift>
• After instruction: Rm  Rm

6

Index Addressing and Look-Up Table

One application of index addressing mode

Look-Up Table

• An array of pre-calculated constants
• Allows to obtain frequently used values with no

complex arithmetic operations
• The cost is the memory space for the table
• Popular approach in embedded systems with lower

computing power and stringent real time demand

7

Look-Up Table
Ex) Write a code which, for a given number x, (a) looks up a
table (located in a memory) of x5 values, and (b) stores the
value in R10. Assume that x is [0 – 9]. Use a look-up table . Use
subroutine approach.

8

Look-Up Table (using ADR instead of LDR)
Ex) Write a code which, for a given number x, (a) looks up a
table (located in the program memory [Flash]) of x5 values,
and (b) stores the value in R10. Assume that x is [0 – 9].

9

Look-Up Table with Indexed Addressing Mode
Q1) Write a code which uses x value in R1 and returns the
value of the factorial of x in r0. Assume that x is [0 – 10].
Use a look-up table in Memory . Use Subroutine approach.

10

Look-Up Table with Indexed Addressing Mode
Q2) Write a code which calculates 10 to the power of x value
in R2 and returns the result in R0. Assume that x is [0 – 9].
Use a look-up table in Memory . Use subroutine approach.

11

Stack
• Last-in-first-out (LIFO)

Memory Space
• Store/Write: Push in to

the stack
• Out/Read: Pop off the

stack

• Stack “grows” toward lower
address
• Address at the bottom is

higher
• Address at the top is

lower

• “Stack” or “Stack pointer”
• The memory location where

the last written data is
stored

• New data pushed are stored
from the (stack – 1)
location.

• Read out data is from the
(stack)

• Usage of Stack:
• Pass the return address

and parameters of the
subroutine

• Local variables

• TOS (Top-of-stack) = stack
pointer (SP) = r13

• Stack’s data size = a word
= 4 bytes

12

Stack Initialization and PUSH & POP
• Initial value of 32-bit size R13(SP) when
powered up is 0x00

• 32-bit address of RAM as a stack section
• Convention: Initialize SP to the uppermost
RAM memory region (because stack grows
toward lower address)

• Different ways of storing (push) and
retrieving (pop)
• STR (push) and LDR (pop)
• STM (push: Store multiple registers) and LDM

(push: Load multiple registers)
• PUSH
• POP

15

Kim
Rectangle

Stack Initialization and PUSH & POP

16

PUSH/POP operation with Multiple Registers

• When multiple registers
are pushed to and popped
from the stack:
• Lower register is stored

in the lower address in
the stack  top of the
stack

• The order in { } for
multiple registers is
irrelevant

17

Stack operation with PUSH and POP

18

0xE0001FE5
0xE0001FE6
0xE0001FE7
0xE0001FE8
0xE0001FE9
0xE0001FEA
0xE0001FEB
0xE0001FEC
0xE0001FED
0xE0001FEE
0xE0001FEF
0xE0001FF0
0xE0001FF1
0xE0001FF2
0xE0001FF3
0xE0001FF4
0xE0001FF5
0xE0001FF6
0xE0001FF7
0xE0001FF8
0xE0001FF9
0xE0001FFA
0xE0001FFB
0xE0001FFC
0xE0001FFD
0xE0001FFE
0xE0001FFF
0xE0002000

