
Chapter 6: Memory Access and Stack
• Indexed Addressing Mode
• Usual Format: LDR Rd, [Rx]  or STR Rx, [Rd]
• [Rx] in LDR & [Rd] in STR: “index register” which holds the 

pointer i.e., the base address
• Advanced Indexed Addressing: allows modification of the value 

in the index register  (“base + offset” addressing mode)
• Indexed Addressing Modes  (WB* = “Write back”)

• Offset of Fixed value vs. Offset of Shifted Register
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Pre-index mode with fixed offset
• FORMAT:  LDR Rd, [Rm, #k]   // immediate number

• Effective Address: EA = Rm + k
• After instruction: Rm  Rm 

Example)Write a code which stores contents of R5 to the location 
0x10000 0000 to 0X1000 000F using pre-indexed addressing mode with 
fixed offset. R5 = 0x55667788.
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Pre-index Writeback mode
• FORMAT: LDR Rd, [Rm, #k]!   // exclamation mark (!)

• Effective Address: EA = Rm + k
• After instruction: Rm  Rm + k

Example)Write a code which stores contents of R5 to the location 
0x20000 0000 to 0X2000 000F using pre-index writeback mode. 
R5 = 0x99AABBCC
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Post-index mode
• FORMAT:  LDR  Rd,[Rm], #k

• Effective Address: EA = Rm
• After instruction: Rm  Rm + k

Example)Write a code which stores contents of R5 to the location 
0x20000 0000 to 0X2000 000F using post-index mode. R5 = 0x99AABBCC
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Pre-index with offset register
• FORMAT:  LDR Rd,[Rm, Rn]

• Effective Address: EA = Rm + Rd
• After instruction: Rm  Rm
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Pre-index with shifted register
• FORMAT: LDR Rd, [Rm, Rn,<Shift>]

• Effective Address: EA = Rm + Rn<Shift>
• After instruction: Rm  Rm
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Index Addressing and Look-Up Table

One application of index addressing mode

Look-Up Table

• An array of pre-calculated constants
• Allows to obtain frequently used values with no 

complex arithmetic operations
• The cost is the memory space for the table
• Popular approach in embedded systems with lower 

computing power and stringent real time demand
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Look-Up Table 
Ex) Write a code which, for a given number  x, (a) looks up a 
table (located in a memory) of  x5 values,  and (b) stores the 
value in R10. Assume that x is [0 – 9].  Use a look-up table . Use 
subroutine approach.
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Look-Up Table (using ADR instead of LDR) 
Ex) Write a code which, for a given number  x, (a) looks up a 
table (located in the program memory [Flash]) of  x5 values,  
and (b) stores the value in R10. Assume that x is [0 – 9].

9



Look-Up Table with Indexed Addressing Mode 
Q1) Write a code which uses x value in R1 and returns the 
value of the factorial of x in r0. Assume that x is [0 – 10].  
Use a look-up table in Memory . Use Subroutine approach.
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Look-Up Table with Indexed Addressing Mode 
Q2) Write a code which calculates 10 to the power of  x value 
in R2 and returns the result in R0. Assume that x is [0 – 9].  
Use a look-up table in Memory . Use subroutine approach.
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Stack
• Last-in-first-out (LIFO) 

Memory Space
• Store/Write:   Push in to 

the stack
• Out/Read:  Pop off the 

stack

• Stack “grows” toward lower 
address
• Address at the bottom is 

higher
• Address at the top is 

lower

• “Stack” or “Stack pointer” 
• The memory location where 

the last written data is 
stored

• New data pushed are stored 
from the (stack – 1) 
location.

• Read out data is from the 
(stack)

• Usage of Stack:
• Pass the return address 

and parameters of the 
subroutine

• Local variables

• TOS (Top-of-stack) = stack 
pointer (SP) = r13

• Stack’s data size = a word 
= 4 bytes
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Stack Initialization and PUSH & POP
• Initial value of 32-bit size R13(SP) when 
powered up is 0x00

• 32-bit address of RAM as a stack section
• Convention: Initialize SP to the uppermost 
RAM memory region (because stack grows 
toward lower address)

• Different ways of storing (push) and 
retrieving (pop)
• STR (push) and LDR (pop) 
• STM (push: Store multiple registers) and LDM

(push: Load multiple registers)
• PUSH
• POP
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Stack Initialization and PUSH & POP
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PUSH/POP operation with Multiple Registers

• When multiple registers 
are pushed to and popped 
from the stack:
• Lower register is stored 

in the lower address in 
the stack  top of the 
stack

• The order in { } for 
multiple registers is 
irrelevant
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Stack operation with PUSH and POP
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0xE0001FE5
0xE0001FE6
0xE0001FE7
0xE0001FE8
0xE0001FE9
0xE0001FEA
0xE0001FEB
0xE0001FEC
0xE0001FED
0xE0001FEE
0xE0001FEF
0xE0001FF0
0xE0001FF1
0xE0001FF2
0xE0001FF3
0xE0001FF4
0xE0001FF5
0xE0001FF6
0xE0001FF7
0xE0001FF8
0xE0001FF9
0xE0001FFA
0xE0001FFB
0xE0001FFC
0xE0001FFD
0xE0001FFE
0xE0001FFF
0xE0002000


