
Chapter 5: Signed Integer Number Arithmetic

• Signed integer instructions and operations
• Signed Number

• MSB (Most Significant Bit) is set aside for sign
• 0 for pos(+) 1 for neg(-)

• Rest of the bits: magnitude
• Sign-2’s Complement format

• +1: 0000 0000 0000 0001
• -1: 1111 1111 1111 1111
• Simplified ALU circuitry
• This is the standard format

1

2’s Complement Format
• Sign-2’s Complement format

• Practice (for 32-bit data size)
• Find the representation of -5
• Find the representation of -0x1000
• Find the representation of -0xF001

2

Signed Number Instructions
Overflow Problem in signed number operations
Example 1)8-bit size case:

(+96) + (+70) = (+ 166)

or 0x60 + 0x46 = 0xA6

3

Signed Number Instructions
Overflow Problem in signed number operations
Example 2) 8-bit size case:

(-128) + (-2) = (-130)
or 0x80 + 0xFE = 0x7E

4

Signed Number Instructions
Overflow Problem in signed number operations
Overflow flag (V) setting:
V = 1 if there is Carry to MSB but no Carry (out of MSB)
V = 1 if there is Carry (out of MSB) but no Carry to MSB
Or
V = (Carry to MSB)EOR(Carry) // Excluive-OR
If V = 1, the result is incorrect

EX1) For 8-bit data size, if A=+7 and B=+18, check the flags from
the result of ADD A, B

C = , N = , V = .
Ans.

5

Signed Number Instructions

EX2) For 16-bit data size, if A=0x6E2F and B=0x13D4, check the
flags from the result of ADD A, B
C = , N = , V = .

Ans.

6

Signed Number Instructions
CLASS ACTIVITY
Q1) For 32-bit data size, if A=0x6E2F356F and B=0x13D49530, check
the result of ADD A, B if it is correct or incorrect.
C = , N = , V = .

Q2) For 32-bit data size, if A=0x542F356F and B=0x12E09530, check
the result of ADD A, B if it is correct or incorrect.
C = , N = , V = .

7

Sign Extension
Overflow in signed number operation is caused by the limited
data size of the result.
We can extend the operands to a larger data size.

“Sign extension” – copy the MSB of the operand to every bit
of the upper bits
EX) 8-bit operand: 0x7F  extend to 16-bit : 0x007F
EX) 8-bit operand: 0x8F  extend to 16-bit : 0xFF8F
EX) 16-bit operand: 0xABCD  extend to 32-bit: 0xFFFFABCD

ARM Instruction
LDRSB (load register signed byte): 8-bit  32-bit
LDRSH (load register signed half-word): 16-bit  32-bit

8

Signed Number Multiplication
SMULL (signed multiply long)
• Similar to the unsigned multiplications: MUL & UMULL
• Multiplication of two 32-bit signed numbers and the product is in a 64-bit signed number
• Format: SMULL RdLo, RdHi, Rm, Rs

//RdHi:RdLo Rm * Rs
• Example: Write code which calculates -3500 * -100 and stores the product to r3|r2.

Check the result if it is correct or incorrect.

10

