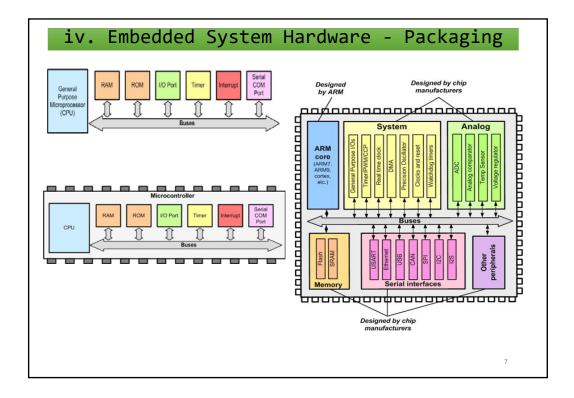
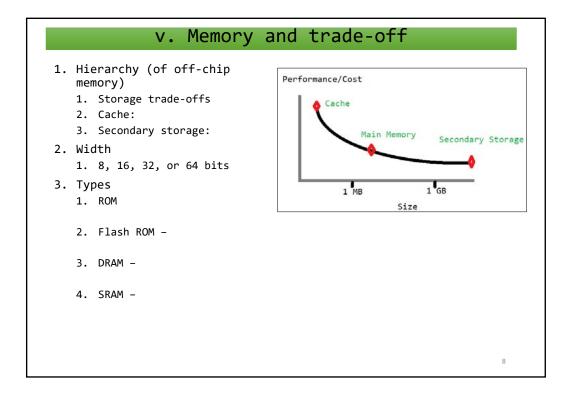
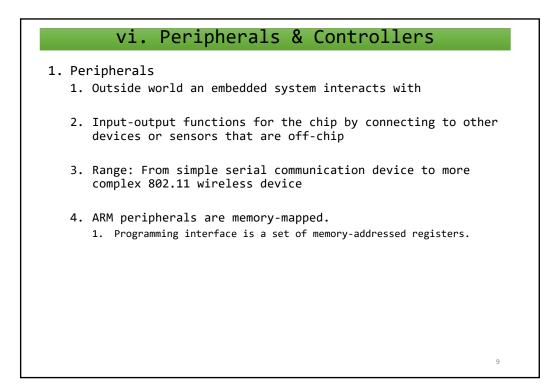
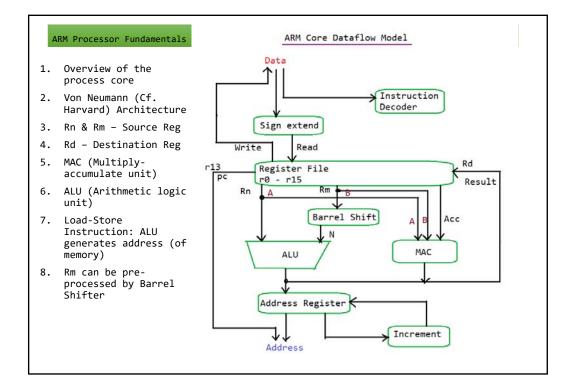
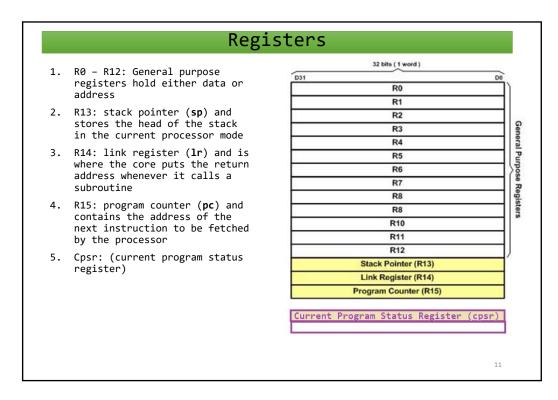

Textbook ARMAssee	 mbly Language Programming & Architecture by Mazidi, et al. 1. ARM and Microcontrollers 2. ARM Architecture and Assembly Language Program 3. Arithmetic and Logic Instructions and Programs 4. Branch, Call, and Looping in ARM 5. Signed Integer Numbers Arithmetic 6. ARM Memory Map, Memory Access, and Stack 7. Floating-point expression
CPUlator Computer	System Simulator ARM emulator - Coding Environment

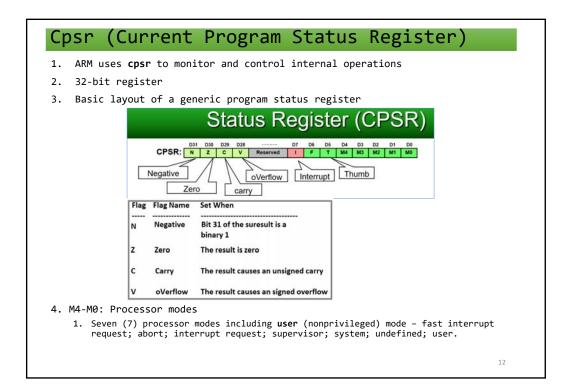


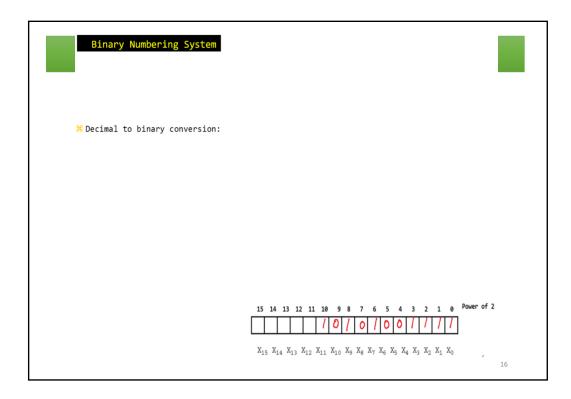


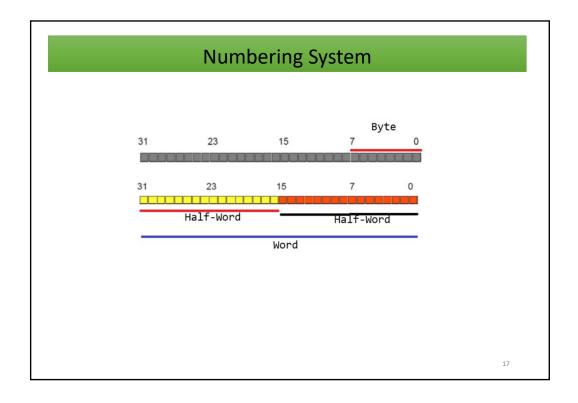

1	Instructions
	1. Reduced number of instruction classes.
	 Reduced number of instruction classes. Each instruction executes
	3. Programmer or compiler synthesizes
	4. Each instruction
	Pipelines
	 Instruction processing is broken down into smaller units
	 executed in parallel by pipeline.
	Registers
	1. RISC machines have
	2. Any register can contain
	3. Acts as the fast
4.	Load-Store Architecture – for memory access
	1. RISC processor operates on data held in registers
	2. Cf. CISC - relies more on hardware for instruction functionality and instructions are more complicated



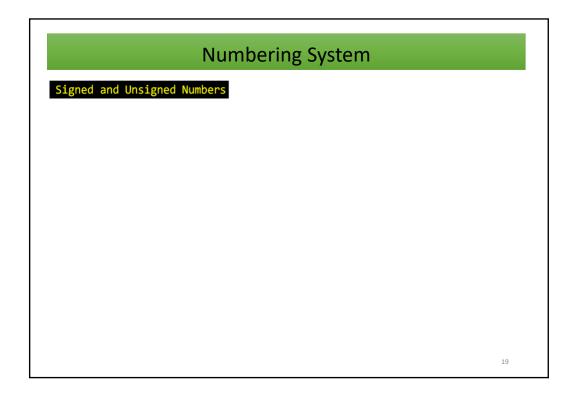


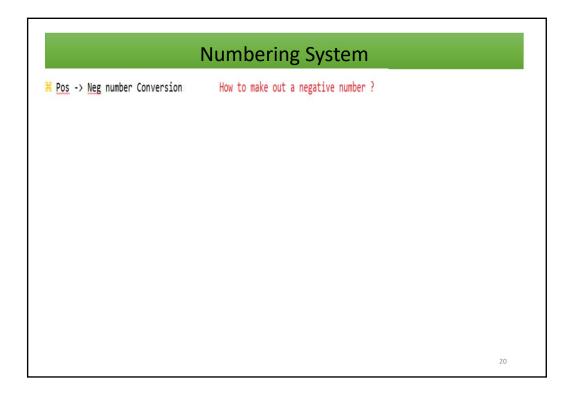


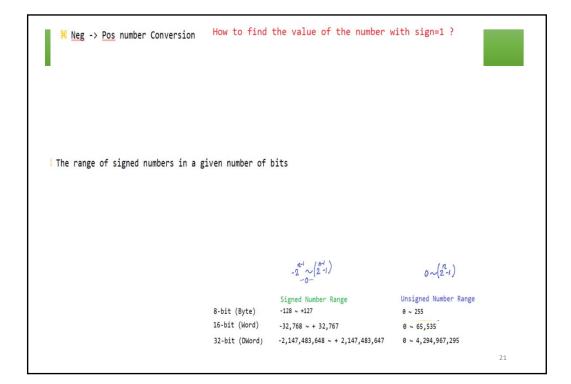


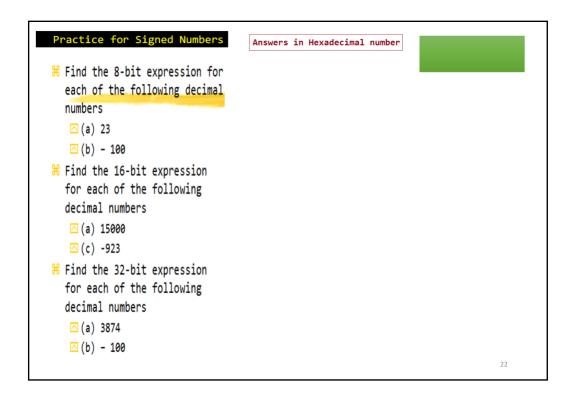


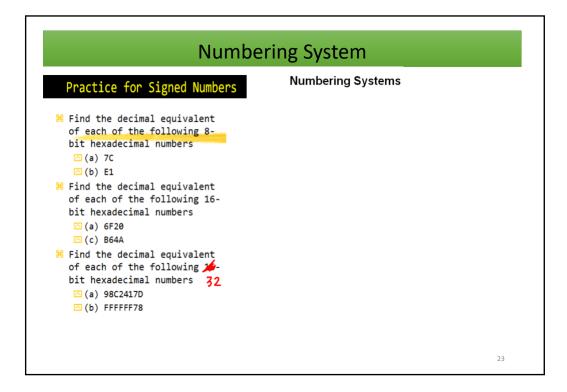
ARM	Core Fai	nily a	nd A	rchit	ectu	ire	
CORE	Application Cortex Processors Embedded Cortex Processors Classic ARM Processors ARM92 ASC100 ARM96		Cortex-A15 Cortex-A9 Cortex-A8 Cortex-A5 Cortex-R7 Cortex-R7	Cortex-M7 SC300 Cortex-M4	SC00 Cortex-M1		
Family	ARM7TDMI ARM94		Cortex-R4 Cortex-A/R	Cortex-M3	Cortex-M0 Cortex-M		
Architecture Version	ARMv4T ARMv5		ARMv7A/R	ARMv7M/ME	ARMv8M		
Revision		ple Core ementation		ISA Enhan	cement		
ARMv4T	ARM7	DTMI, ARM9T		Thumb			
ARMv5TE	ARM9	E, ARM10E			tructions ing state humb		
ARMv5TEJ	ARM7	EJ, ARM926EJ		Java Acce	leration		
ARMv6	ARM1	1		data hand	and mixed ling; new a instruct		13


١	Numbe	ri	ng	g S	yst	em				
Decimal numbers	1,245 =	= 1*1	.0 ³	+ 2*	$10^{2} +$	4*10 ¹	+ 5*10	0		
Binary Numbers 1010 1*2 ⁵ -	$11_2 + 0*2^4 + 1$	*2 ³ -	+ 0) *2 ² -	+ 1*2	¹ + 1*	$2^{\circ} = 32$	+	8 +	2 + 1 = 4
	n	2 ⁿ		n	2 ⁿ	n	2 ⁿ		n	2 ⁿ
	0	1		4	16	8	256		12	4096
	1	2		5	32	9	512		13	8192
	2	4		6	64	10	1024		14	16348
32-bit binary	3	8		7	126	11	2048		15	32768
number	2	³¹ =2.	1474	184·10 ⁹		2 ³² =4.	294967.10 ⁹			14


	Number	ing	; Sy	ste	5W				
N-bit computer and accessible memory		Lilo Iega for val	2 ³ 2 ⁴ lues of 2	0	Gig Ter = 10,	a	2	2 ⁵⁰ 2 ⁶⁰ 0, 50	Penta Exa , 60
	a 16 a 10s	k06 11	V * 61	-6/	IV				
Conversion	$2^{16} = 2^{103}$ $2^{32} = 2^{30}$	* 2 ² =	= 1G * 4		G 2			64 +	8 + 2
Conversion	$2^{32} = 2^{30}$	* 2 ² =	= 1G * 4	4 = 4 4	G 2			64 + 2 ¹	8 + 2 2°
Conversion	$2^{32} = 2^{30}$	* 2 ² =	= 1G * 4 16 8 0 1 2 ⁷ 2 ⁶	4 = 4 4 0	G 2 1	0	=	1000 10	10 10 50
Conversion	$2^{32} = 2^{30}$	* $2^2 =$	= 1G * 4 16 8 0 1 2 ⁷ 2 ⁶	4 = 4	G 2 1 2 ⁴	0 2 ³	=	21	20






		Practice		
	Binary	Hexadecimal	Decimal	
1.	100			
2.	10101101			
3.	1101110101			
4.	11111011110			
5.	1000000001			
6.		8EF		
7.		10		
8.		A52E		
9.		70C		
10.		6BD3		
11.			100	
12.			527	
13.			4128	
14.			11947	
15.			59020	
				:

(Characte	ſ	R	le	pr	es	eı	nt	ta	nti	.C	n				
Dec HxOct Char		Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html (Chr	Dec	Hx	Oct H	Itml C	hr
0 0 000 NUL	(mull)	32	20	0.40	6#32;	Space	64	40	100	c#64;	8	96	60 1	140	¢#96;	
	(start of heading)				4#33;					4#65;					\$97;	a
	(start of text)				4#34;					4#66;						ь
	(end of text)				6#35;					6#67;					#99;	c
	(end of transmission)				6#36;					4#68;					#100	; d
5 5 005 ENQ		37	25	045	6#37;	+	69	45	105	4#69;					#101	
	(acknowledge)	38	26	046	6#38;	6	70	46	106	c#70;	F	102	66 1	146	#102	; £
7 7 007 BEL	(bell)	39	27	047	€#39;		71	47	107	6#71;					#103	
8 8 010 BS	(backspace)	40	28	050	6#40;	(72	48	110	6#72;	H	104	68 1	150	#104	; h
9 9 011 TAB	(horizontal tab)	41	29	051	6#41;	1	73	49	111	6#73;	I	105	69 1	151	#105	; 1
10 A 012 LF	(NL line feed, new line)	42	24	052	6#42;		74	44	112	6#74;					\$\$106	
	(vertical tab)				6#43;					4#75;					\$107	
	(NP form feed, new page)									6#76;						
	(carriage return)				6#45;					£#77;					#109	
	(shift out)				6#46;					∉#78;					¢#110	
	(shift in)				6#47;					6#79;					\$#111	
	(data link escape)				6#48;					¢#80;					\$#112	
	(device control 1)				6#49;					6#81;					\$#113	
	(device control 2)				∉#50;					6#82;					\$#114	
	(device control 3)				4#51;					∉#83;					#115	
	(device control 4)				€#52;					6 #84;					\$\$116	
	(negative acknowledge)				€#53;					6#85;					\$\$117	
	(synchronous idle)				¢#54;					6#86;					#118	
	(end of trans. block)				6#55;					6#87;					#119	
24 18 030 CAN					€#56;					¢#88;					#120	
	(end of medium)				6#57;					4#89;					#121	
26 1A 032 SUB					6#58;					6#90;					#122	
27 1B 033 ESC					6#59;					6#91;					#123	
	(file separator)				6#60;					6#92;					#124	
	(group separator)				= >					6#93; 6#94;					#125 #126	
	(record separator)															
31 1F 037 US	(unit separator)	63	3F	077	¢#63;	7	95	SF	137	6∰95;	-	127	71 1	177	S#121	; 11