
X86 Assembly Language
Programming

(2) Procedures

42

ckim
Typewritten Text
www.mwftr.com

Procedures with Value Parameters
• Main program call(s) a procedure
• Main Program transfers the parameter values
• Procedure receives (retrieves) them
• Procedure may do a task or it may return a value

– value-returning procedure is sometimes called a
function

43

Procedure Calling and Stack
• 3 concepts:

– How to transfer control from a calling [main]
program to a procedure and back

– How to pass parameter values to a procedure
and results back from the procedure

– How to write procedure code that is
independent of the calling program.

• Hardware stack is used to accomplish
each of the above jobs. 44

80x86 Stack
• Hardware Stack

– ESP holds the address of the “first (lowest)
byte above (or higher) ” of the stack
pointer

– Most access is indirect, through the stack
point register ESP

• Operating system initializes ESP to point to byte
above stack pointer

• As program executes, it points to the last item
pushed on the stack

– “Top” of stack is at the lowest address
– Stack grows toward lower address

45

How Call/Ret Works
• call

– The address of the instruction in the EIP register following the
call (“the address of the next code line after the call
instruction”) is pushed on the stack

– so ESP has grown by 4, which means ESP address is
lowered by 4

– Equivalent to push EIP
– Then, the instruction pointer register EIP is loaded with the

address of the first instruction in the procedure jump to the
procedure

46

How Call/Ret Works
• ret

– The double-word (4 bytes) on the top of the stack is popped
into the instruction pointer register EIP (so ESP has increased
by 4

– Equivalent to pop EIP
– this is the address of the instruction right after the call, that

instruction will be executed next [Return Address]
– If the stack has been used for other values after the call, these

must be removed before the ret instruction is executed

47

Alternative Ret Format
• ret n

– After the returned address is popped to EIP from the stack, n is
added to ESP

– [ESP] = [ESP + 8]
– This is most often used to logically remove procedure parameters

that have been pushed onto the stack

– Used in Stdcall Protocol

• Protocol?
– Transfer of control from calling program to procedure and back
– Passing parameter values to procedure and results back from the

procedure
48

Push Instruction
•Usual format: push source

–source can be memory, register or immediate
–Double-word or word pushed on the stack

•ESP decremented by size of operand
•Flags not changed
•By Push, stack point goes lower in address
(ESP)

49

Push Instruction

50

Push Example
• Pushd --- DWORD size operand

51

pop Instruction and Execution
• Usual format: pop destination

– Double-word destination can be memory or
register

• Operand stored in stack where ESP point is
copied to destination

• ESP incremented by size of operand after the
value is copied

52

pop Instruction and Execution

53

Pop Example [pop CX]

54

Push Exercise/Solution
• Before

– [ESP]=06 00 10 00
– [ECX]=01 A2 5B 74

• After push ECX
• After pushd 10

– [STACK]= ?

55

Push – Practice
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push EBX

56

Push – Practice (SOLUTION)
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push EBX

57

Push-Pop Practice
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After

• Push EAX
• Pushd 30
• Pop EAX
• Pop EBX

58

Push-Pop Practice SOLUTION
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After

• Push EAX
• Pushd 30
• Pop EAX
• Pop EBX

59

Practice Example (with original ESP=10001FF0)

Push/Pop example code: Proc1.asm

62

Push/Pop example code: Proc1.asm

• push EAX

63

Push/Pop example code: Proc1.asm

• pushd ‐240

64

Push/Pop example code: Proc1.asm

• pushw 5

65

Push/Pop example code: Proc1.asm

• pop EAX

66

Push/Pop example code: Proc1.asm

• pop AX

67

Push/Pop example code: Proc1.asm

• pop EBX

68

