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Procedures with Value Parameters
• Main program call(s) a procedure
• Main Program transfers the parameter values
• Procedure receives (retrieves) them
• Procedure may do a task or it may return a value

– value-returning procedure is sometimes called a 
function
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Procedure Calling and Stack
• 3 concepts:

– How to transfer control from a calling [main] 
program to a procedure and back

– How to pass parameter values to a procedure 
and results back from the procedure

– How to write procedure code that is 
independent of the calling program.

• Hardware stack is used to accomplish 
each of the above jobs. 44



80x86 Stack
• Hardware Stack

– ESP holds the address of the “first (lowest) 
byte above (or higher) ” of the stack 
pointer

– Most access is indirect, through the stack 
point register ESP

• Operating system initializes ESP to point to byte 
above stack pointer

• As program executes, it points to the last item 
pushed on the stack

– “Top” of stack is at the lowest address
– Stack grows toward lower address
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How Call/Ret Works
• call

– The address of the instruction in the EIP register following the 
call (“the address of the next code line after the call 
instruction”) is pushed on the stack

– so ESP has grown by 4, which means ESP address is 
lowered by 4

– Equivalent to push EIP
– Then, the instruction pointer register EIP is loaded with the 

address of the first instruction in the procedure jump to the 
procedure
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How Call/Ret Works
• ret

– The double-word (4 bytes) on the top of the stack is popped 
into the instruction pointer register EIP (so ESP has increased 
by 4 

– Equivalent to pop EIP
– this is the address of the instruction right after the call, that 

instruction will be executed next [Return Address]
– If the stack has been used for other values after the call, these 

must be removed before the ret instruction is executed
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Alternative Ret Format
• ret n

– After the returned address is popped to EIP from the stack, n is 
added to ESP

– [ESP] = [ESP + 8]
– This is most often used to logically remove procedure parameters 

that have been pushed onto the stack

– Used in Stdcall Protocol

• Protocol?
– Transfer of control from calling program to procedure and back
– Passing parameter values to procedure and results back from the 

procedure
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Push Instruction
•Usual format:  push source

–source can be memory, register or immediate
–Double-word or word pushed on the stack 

•ESP decremented by size of operand
•Flags not changed
•By Push, stack point goes lower in address 
(ESP)
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Push Instruction
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Push Example
• Pushd --- DWORD size operand
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pop Instruction and Execution
• Usual format:  pop destination

– Double-word destination can be memory or 
register

• Operand stored in stack where ESP point is 
copied to destination

• ESP incremented by size of operand after the 
value is copied
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pop Instruction and Execution
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Pop Example   [pop CX] 
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Push  Exercise/Solution
• Before

– [ESP]=06 00 10 00
– [ECX]=01 A2 5B 74

• After push ECX
• After pushd 10

– [STACK]= ?
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Push – Practice 
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push EBX
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Push – Practice (SOLUTION)
• Before:

– [ESP]=02 00 0B 7C
– [EBX]=12 34 56 78

• Stack Diagram and [ESP]
– After pushd 20
– After push EBX
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Push-Pop Practice
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After 

• Push EAX
• Pushd 30
• Pop EAX
• Pop EBX
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Push-Pop Practice SOLUTION
• Before:

– [ESP]=00 10 F8 3A
– [EAX]=12 34 56 78

• Stack Diagram, [EAX], [EBX], & [ESP]
– After 

• Push EAX
• Pushd 30
• Pop EAX
• Pop EBX
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Practice Example (with original ESP=10001FF0)



Push/Pop example code: Proc1.asm
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Push/Pop example code: Proc1.asm

• push EAX
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Push/Pop example code: Proc1.asm

• pushd ‐240
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Push/Pop example code: Proc1.asm

• pushw 5
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Push/Pop example code: Proc1.asm

• pop EAX
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Push/Pop example code: Proc1.asm

• pop AX
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Push/Pop example code: Proc1.asm

• pop EBX
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