
x86 Assembly Programming
Part 2

EECE416 Microcomputer

\

Resources:
Intel 80386 Programmers Reference Manual

Essentials of 80x86 Assembly Language
Introduction to 80x86 Assembly Language Programming

WWW.MWFTR.COM/uC.html

ckim
Typewritten Text
WWW.MWFTR.COM

LST File and The Memory Contents of Code

Registers for x86

Basic Data Types

• Byte (BYTE), Words
(WORD), Double
Words (DWORD)

• Little-Endian
• Align by 2 (word) or 4

(Dword) for better
performance – instead
of odd address

Data Declaration
• Directives for Data Declaration and

Reservation of Memory
– BYTE: Reserves 1 byte in memory

• Example: D1 BYTE 20
D2 BYTE 00010100b
String1 BYTE “Joe” ;

[4A 6F 65]

– WORD: 2 bytes are reserved
• Example: num1 WORD -10

num2 WORD FFFFH

– DWORD: 4 bytes are reserved
• Example: N1 DWORD -10

– QWORD: 8 bytes
• 64 bit: RAX RBX RCX ,etc
• 32 bit: EDX:EAX Concatenation for CDQ instruction

Instruction Format
• Opcode:

– specifies the operation performed by the
instruction.

• Register specifier
– an instruction may specify one or two

register operands.

• Addressing-mode specifier
– when present, specifies whether an operand

is a register or memory location.
• Displacement

– when the addressing-mode specifier
indicates that a displacement will be used to
compute the address of an operand, the
displacement is encoded in the instruction.

• Immediate operand
– when present, directly provides the value of

an operand of the instruction. Immediate
operands may be 8, 16, or 32 bits wide.

Register Size and Data
• Register/Data designation

dependency:
• Before [EAX]= 01234567
• Instruction

– mov EAX, 1Fh
– After [EAX]= 0000001F
– mov eax, 1F00h
– After [EAX] = 00001F00
– mov AX, 1F00h
– After [EAX] = 01231F00
– mov AL, 1Fh
– After [EAX]=0123451F
– mov ah, 1Fh
– After [EAX] = 01231F67

Register Size and Data
• Assuming that the content of eax is [01FF01FF],

what would be the content of eax after each
instruction?

eax:[]
eax:[]
eax:[]

• Further Example
• Before EAX: [01010101]

mov al -10 ; EAX:[]
mov ax, -10; EAX: []
mov eax, -10; EAX: []

Group Activity

• Do first
manually
(Oct 14)

• Do then by
Assembly
coding
(Today)

Group Activity

• Do first
manually

• Do then
by
Assembly
coding

Class activity ---- ASM code for verification

• #1. mov AL, 155 ; with [EAX]=01FF01FF

25

386 Instruction Set

• 9 Operation
Categories
– Data Transfer
– Arithmetic
– Shift/Rotate
– String Manipulation
– Bit Manipulation
– Control Transfer
– High Level Language

Support
– Operating System

Support
– Processor Control

• Number of operands:
0, 1, 2, or 3

Data movement Instructions
• MOV (Move)

– transfers a byte, word, or doubleword from the source operand to
the destination operand: R M, M R, R R, I R, I M

– The MOV instruction cannot move M M
– M M via MOVS (string)

• MOVZX (Move with Zero-Extended)
• MOVSX (Move with Sign-Extended)
• XCHG (Exchange)

– swaps the contents of two operands.
– swap two byte operands, two word operands, or two

doubleword operands.
– The operands for the XCHG instruction may be two

register operands, or a register operand with a
memory operand.

MOVZX (Before: EAX= [1111FFFF])

• MOVZX
mov AL, 8Fh
movzx AX, AL

• After [EAX] =
1111008F

NOTE:movzx can extend to 32-bit destination too.
movzx EAX, AL ; [EAX]=0000008F
movzx EAX, AX ; [EAX]=0000008F

MOVSX (Before: EAX= [1111FFFF])

• MOVSX
mov AL, 8Fh
movsx, AX, AL
• After[EAX]=

1111FFF8

NOTE:movsx can extend to 32-bit destination too.
movsx EAX, AL ; [EAX]=FFFFFF8F
movsx EAX, AX ; [EAX]=FFFFFF8F

Direct-Offset Operands
• Add displacement to the name of a variable
• Accessing memory locations that may not have

explicit labels
• BYTE Case [AL]

Direct-Offset Operands
• WORD case [AX]

• DWORD case [EAX]

Example Code /ch04/moves.asm

Data and Code Segment

Data type Conversion Instructions
• CBW (Convert Byte to Word)

– extends the sign of the byte in
register AL throughout AX.

• CWDE (Convert Word to Doubleword
Extended)
– extends the sign of the word in

register AX throughout EAX.
• CWD (Convert Word to Doubleword)

– extends the sign of the word in
register AX throughout register DX

– can be used to produce a doubleword
dividend from a word before a word
division

• CDQ (Convert Doubleword to Quad-
Word)
– extends the sign of the doubleword

in EAX throughout EDX.
– can be used to produce a quad-word

dividend from a doubleword before
doubleword division.

Data type Conversion Instructions – Practice
• CBW (Convert Byte to Word)

– extends the sign of the byte
in register AL throughout AX.

• CWDE (Convert Word to
Doubleword Extended)

– extends the sign of the word
in register AX throughout
EAX.

• CWD (Convert Word to
Doubleword)

– extends the sign of the word
in register AX throughout
register DX

– can be used to produce a
doubleword dividend from a
word before a word division

• CDQ (Convert Doubleword to
Quad-Word)

– extends the sign of the
doubleword in EAX
throughout EDX.

– can be used to produce a quad-
word dividend from a
doubleword before doubleword
division.

Data type Conversion Instructions – Code

• CBW (Convert Byte to Word)
– extends the sign of the byte in register AL throughout

AX.
• CWDE (Convert Word to Doubleword Extended)

– extends the sign of the word in register AX throughout
EAX.

• CWD (Convert Word to Doubleword)
– extends the sign of the word in register AX throughout

register DX
– can be used to produce a doubleword dividend from a

word before a word division
• CDQ (Convert Doubleword to Quad-Word)

– extends the sign of the doubleword in EAX throughout
EDX.

– can be used to produce a quad-word dividend from a
doubleword before doubleword division.

