
1

EECE416 :Microcomputer Fundamentals and Design

X86 Assembly Programming

Part 1 – MASM

www.MWFTR.com

ckim
Typewritten Text
WWW.MWFTR.COM

Multiple Address Access Issues
a Reminder: a single address locates only

a byte of memory
a 8-bit processor

` Accesses one address with a byte data

a 16-bit processor
` Accesses two address spaces (Even (or

Low Byte) and Odd(or High Byte)) at a
single execution with 2-byte (or
“Word”) data

`Where do we store each of the 2 bytes
to each of the 2 address spaces?

2

3

Big-Endian vs. Little-Endian

aBig-Endian: Words are stored with the
lower 8- bits (“Lower Byte”) in the higher
of the two storage locations (“Addresses”):
Motorola
`“Big guy (“Upper Byte”) ends at lower

address”
aLittle- Endian: Lower-order byte stored in

the lowest address: Intel 80x86 family
`Little guys (“Lower Byte”) ends at lower

address”

4

Big-Endian vs. Little-Endian

“Endianness”
a Endian or Endian-Architecture

`how multi-byte data is represented by a computer system and is
dictated by the CPU architecture of the system

`Not all computer systems are designed with the same endian
architecture

`Issues with software and interface

5

Bi-Endian & Endian-Neutral Approaches

aConversion
`Byte Swap
`Network I/O Macro

a“Endian Neutral”:

6

HOMEWORK
aTechnical Report on “Endian-Neutral Approaches”
`What are they?
`How do they work?
`Who are involved and leading the works
`Submission Due: Hardcopy + Softcopy by

5:30pm Thursday Oct 13

aHow to write well for busy technical people ?

7

Compare this

8

With this

9

How to Writing well for the Class class
a People are more likely to read subjects/writings/emails

that create curiosity or provide utility.
a When they are busy

` Curiosity fades in importance
` They read only the ones with practical importance [“utility”]

a So, write as if you are a staff writer (targeting for busy
people) for a newspaper, and remember that you have
an editor whose job is to cut your article to fit into a
limited space, maybe just 1 inch in a column.
`Important things [Conclusions and summary] in the

first paragraph
⌧Summary of the event/thing first so that it delivers message

even though only that summary survives the “cutting”

`Then expand your story after the First Paragraph
`Use your own words

10

HOMEWORK - Recap
a Technical Report on “Endian-Neutral Approaches”

`Subject
⌧What are they?
⌧How do they work?
⌧Who are involved and leading the works

`Format:
⌧2 - 3 pages
⌧First paragraph must summarize the entire report (the importance of

the first paragraph – your own words --- this determines the grade):
you may want to write this first paragraph after completing the
report.

`No figure, no photo, text only.
`Submission Due: Hardcopy + Softcopy by 5:30pm Thursday Oct

13

11

12

x86 Architecture
a First x86 Family member:

8086 (Æ 8088). 1978
`Cf. 4004 Æ 8080 Æ 8085

a 8086
`16-bit registers, external

data bus
`20-bit addressing (Æ

1MB address space)
`Segmentation : 64KB

⌧Why? Internal 16-bit
register cannot hold 20-bit
address

13

X86 Modes of Operation

a Real Address Mode (16-bit registers)
` 1 MB Memory can be accessed 0x00000 –

0xFFFFF
`Processor runs one program at a time
`Application programs are allowed to access any

memory location including that is linked directly to
system hardware

`MS-DOS and Windows95 and 98
`A few extra features available for this mode by which

direct access to system memory and hardware
devices is possible

`Programs running in real-address mode can cause
the OS crash

14

x86 Memory Management – Real Addr Mode

a Memory Segmentization
` (for 8086 with 20 Addr lines) 1

MB Memory can be accessed
0x00000 – 0xFFFFF

`But 16-bit register cannot hold
the 20-bit address

`Solution: Segmentize the 1MB
memory space into multiple (16
exactly) areas (segments)

`Accessing by Segment
(expressed by first 4 hex digits
only) + Offset (max. offset =
0xFFFF)

15

x86 Memory Management – Real Addr Mode

a20-bit address calculation
`16-bit segment value
`16-bit offset value
`Memory address = (16-bit Seg

value) *0x10 + (16-bit Offset)
`16-bit segment value is placed in one

of the segment registers:
⌧CS: Code seg register
⌧DS: data seg register
⌧SS: Stack seg register
⌧ES, FS, GS, etc

16

x86 Mode – Protected Mode
aProtected Mode [from i286] Æ with 32-bit registers
`Native State of the Processor in which all instructions

and features are available
`Programs are given separate memory areas and the

processor prevents programs from referencing
memory outside their assigned segments.

`Access to a total of 4GB Memory (for i386): 16MB for
i286

`Multiple programs run at the same time – own
reserved memory area

`Windows and Linux

17

x86 Memory Management –Protected Mode

a In Microsoft Assembler (MASM)
` “Flat (Segment) Mode” is appropriate for protected mode programming
` Just one(1) 32-bit address register is enough (for up to 4 GB Memory

space)
`Actual address location calculation is done in the background

18

x86 Architecture
a 80286

`“Protected Mode” first introduced
` Segment register contents as selector or pointer

⌧24-bit base address Æ 16MB memory size

a 80386
`32-bit registers for operands and addressing(Æ4GB space)
`Lower half of 32 bits is equivalent to 16 bits of earlier

generations [Backward (upward) compatibility with 16-bit
registers]

`Some new instructions was added (like bit manipulation)
`Max 4GB segmentation of physical space
`New Parallel Processing Stages introduced: Bus Interface Unit,

Code Prefetch Unit, Instruction Decode Unit, Execution Unit,
Segment Unit, Paging Unit

19

Overview of Basic Execution – 386 or higher

a Set of resources for Executing instructions
and for Storing code, data, and state
information

a Resources:
` 8 General data registers
` 6 Segment registers
`Status and control registers

a Holding the following items (for all):
` Operands for logical and arithmetic operations
` Operands for address calculations
` Memory pointers

20

General-Purpose Data Registers

a Primaries
`EAX (accumulator for operands and results data)
`EBX (Pointer to data in Segment)
`ECX (Counter)
`EDX (for I/O pointer)

a Secondaries
`EBP (base pointer to data on the stack in DS

segment)
`ESI (Source pointer)
`EDI (data pointer) for string instructions
`ESP (Stack pointer)holds the stack pointer (restricted

use)
`ESP points to the top item on the stack and the EBP

points to the "previous" top of the stack before the
function was called.

EFLAG Register
a 32-bit register

` Initial state: 0x00000002
` Contains a group of status flags (S), a control flag (C), and a group of system

flags (X)

Status Flags

Control Flag (DF)

a DF (Direction Flag)
`The direction flag controls the string instructions (MOVS, CMPS,

SCAS, LODS, and STOS).
`DF=1 Æ string instructions to auto-decrement (that is, to

process strings from high addresses to low addresses).
`DF=0 Æ string instructions to auto-increment (process strings

from low addresses to high addresses).
`STD Æ Set DF flag
`CLDÆ Clear DF flag

System Flags

MASM Screen Capture

25

Web Page for Instruction and Link Library

a Individual Assignment:
` Install a Visual Studio version in to your computer
`Read the Instruction very carefully
`And install the Link Library
`Bring your computer to the Tuesday (Oct 11 2016) class

26

Microcomputer Project
aWeek 1 (due Oct 11)
`ISSUES – Driver Program and/or OS

incompatibility
⌧Mini Arduino
⌧MSP430

`SOLUTION1
⌧Try to solve by Wednesday
⌧If not solved, receive new type of controllers ASAP

`SOLUTION2
⌧Suggestion???

27

Microcomputer Project

aWeek 2 (due Oct 18)
`Connection of an RGB LED
`Written Report – must include
⌧Brief description of the project
⌧Code
⌧Connection Diagram
⌧Screen captures or photo-shots of

working system

28

1 Sample Code and Run in Visual Studio – Open Project
Solution

2 Sample Code and Run in Visual Studio – Select
Project.sln

3.Sample Code and Run in Visual Studio –
Addsub.asm

4 Sample Code and Run in Visual Studio – Build
Solution/Compile

5. Sample Code and Run in Visual Studio – Build
Success

6 Sample Code and Run in Visual Studio --- Run/Debug
(F10 key)

7. Sample Code and Run in Visual Studio --- LIST
file open

8 Sample Code and Run in Visual Studio --- .LST
file

9 Sample Code and Run in Visual Studio -
-- .lst

10 Sample Code and Run in Visual Studio
--- .lst

11 Sample Code and Run in Visual Studio – When a new code is
tested

12 Sample Code and Run in Visual Studio --- Read in the
new code

13 Sample Code and Run in Visual Studio ---
New code

14.LST File and The Memory Contents of Code

Notational Conventions
a Little Endian Machine
a Bit and Byte Oder

`Smaller address at the bottom of figure
`Address increases toward top
`Bit positions numbered from right to left
` the bytes of a word are numbered starting from the least significant byte

43

Assembly Language Fundamentals
a Integer Constants

` [{+/-}] digits [radix]
` Radix

⌧H hexadecimal
⌧q/o Octal
⌧D Decimal {Default}
⌧b Binary
⌧Example:

⌧*Note: Hex constant beginning with a letter must have a leading 0

44

Assembly Language Fundamentals
aCharacter Constants
`A single character enclosed in single or double quotes

⌧“A”
⌧“d”

`MASM stores the value in memory as the character’s
binary ASCII code

aString Constants
`A sequence of characters (including spaces) enclosed

in single or double quotes
⌧‘ABC’
⌧“Good night, Gracie”
⌧‘Say “Good night,” Gracie’

45

Assembly Language Fundamentals
a Directives

`A command embedded in the source code that is recognized and
acted upon by the assembler

`Directives can define variables, macros, and procedures
`Directives can assign names to memory segments
`Directives do not execute at runtime
`Directives are case insensitive in MASM

a Defining Segments (or Program Sections)
`.data ; the area of program containing variables
`.code ; the area of a program containing executable instructions
`.stack ; the area of a program holding the runtime stack (with its

size)

46

Assembly Language Fundamentals
a Directives
`Variables
`memory

segments
a Defining

Segments
`.data
`.code
`.stack

47

48

Assembly Language Fundamentals
a Instruction:

`“A statement that becomes executable when a program is
assembled” – Instructions are translated by the assembler into
machine language bytes, which are loaded and executed by the
CPU at runtime

a Instruction Format
`Label, Instructional mnemonic, argument1,

argument2, argument3
`Label: Identifier (followed by a colon)
`Mnemonic: a reserved name for a class of instruction

op-codes which have the same function
`Operands (arguments):
⌧0 to 3 operands
⌧2 types of form: literals (i.e., number) or identifiers for

data items.

49

Assembly Language Fundamentals

aInstruction Format
`When two operands are present in an

arithmetic or logical instruction
⌧ the right operand is the source (src) and
⌧ the left operand, the destination (dst)

`Example:
Count DWORD 100 ; data label
LOADREG: MOV EAX, SUBTOTAL
;label mnemonic dst, src

50

Assembly Language Fundamentals
a Instruction Mnemonic: a short word that identifies an

instruction
a Example

a Example

51

Assembly Language Fundamentals
a Comments
a Single Line Comments (;)
a ; This line is a comment
a Block Comments: Begin with the COMMENT directive and

a user-specified symbol

a

Assembly Language Fundamentals
aNOP (No Operation) Instruction
`Takes up 1 byte of program storage
`Does not do any work
`Use when to align code to even-addressed

boundaries (which, in x86, loads data more quickly.)

52

Assembling and Running (Debugging) Programs

a 1: Create an ASCII text file named source file using a text editor
` *NOTE: Starting from an existing project (and source file) and

revising and saving as a new .asm file is most highly
recommended

a 2: Assemble the source file. The assembler reads the source file
and produces an object file, a machine language translation of the
program. Optionally, it produced a listing file. {VS: BUILD
SOLUTION}

a 3: Execute the program (by Debug)

53

Assembling and Running Programs in Visual Studio

a Step 1: Open an existing project and Revise and Save as a new file
name using

a Step 2: Assemble the source file (by Build).
a Step 3: Debug (F10 key for line execution)

54

Assembly Language Fundamentals - Summary
a Adding and Subtracting

Integers
a TITLE directive
a Line comment
a INCLUDE directive

a .code directive
a PROC directive – start

a CALL a procedure
a Exit --- halt to program

(Not a MASM keyword,
but of Irvine32.inc)

a ENDP directive – end
a END directive – last line to

be assembled
a Output (DumpRegs)

55

