www.mwftr.com

EECE416 Microcomputer Fundamentals & Design

Computer Architecture

Dr. Charles Kim Howard University

"Computer Architecture"

Computer Architecture

- Art of selecting and interconnecting hardware components to create functional unit (or computer)
- \triangle 2 points of view

⊠Instruction Set architecture (ISA):

- the code that a CPU reads and acts upon. It is the machine language (or assembly language), including the instruction set, word size, memory address modes, processor registers, and address and data formats
- Interface between H/W and S/W
- programmers' point of view

Microarchitecture (or **computer organization**):

- describes the data paths, data processing elements and data storage elements, size of cache, and describes how they should implement the ISA
- Optimization
- Power Management
- system designers' point of view.

Analogy:

⊠ House (rooms) – views of builders and residents

⊠Car – views of manufacturers (or mechanics) and drivers

Micro-Architecture

K Computer System

CPU (with PC, Register, SR) + Memory

Hicro-Architecture:

- "conceptual design and fundamental operational structure of a computer system"
- "blueprint and functional description of requirements and design implementations of a computer"
- focusing on the way the CPU performs and accesses memory.

Microprocessor

Micro-Architecture

ALU (Arithmetic Logic Unit)

- Fundamental building block of CPU
- Binary Full Adder

Microprocessor Bus

Architecture by CPU+MEM organization

Architecture by CPU+MEM organization

Architecture by CPU+MEM organization

- princeton (or von Neumann) Architecture
 MEM contains both Instruction and Data
 Non Neumann Bottleneck – CPU <→ Memory
- Harvard Architecture
 - Data MEM and Instruction MEM
 - Higher Performance via Pipeline
 - Higher MEM Bandwidth

Memory Price

🗲) 🛞 www.jcmit.com/mem2015.htm

VC Q Search

Graph of Memory Prices Decreasing with Time (1957-2015)

Historical Cost of Computer Memory and Storage

Memory Price

VC Q Search

Chart of Memory Price Through Time Download Excel Spreadsheet of Memory Data

Home

date (X)	\$/Mbyte (Y)	Date		Ref:	Page	Company	Size	Cost	Speed	Memory Type	J
	Sector Sector						KByte	US \$	nsec		5
1957.00	411,041,792	1957		Phister 366		C.C.C.	0.00098	392.00	10000	transistor Flip-Flop	
1959.00	67,947,725	1959		Phister 366		E.E.Co.	0.00098	64.80	10000	vacuum tube Flip-Flop	
1960.00	5,242,880	1960		Phister 367		IBM	0.00098	5.00	11500	IBM 1401 core memory	1
1965.00	2,642,412	1965		Phister 367		IBM	0.00098	2.52	2000	IBM 360/30 core memory	
1970.00	734,003	1970		Phister 367		IBM	0.00098	0.70	770	IBM 370/135 core memory	
1973.00	399,360	1973	Jan	PDP8/e User Price List		DEC	12	4680.00		Core memory 8KwordX12 bit	
1974.00	314,573	1974		Phister 367		IBM	0.00098	0.30	800	IC Memory for IBM 370/125	
1975.00	421,888	1975	Jan	Radio- Electronics		MITS	0.25	103.00	1000	Altair 8800 256 Byte Static Board	
1 <mark>975.0</mark> 8	180,224	1975	Feb			MITS	1	176.00		Altair 1K Static Board	ĺ.
1975.25	67,584	1975	Apr			MITS	4	264.00		Altair 4K DRAM Board	
1975.75	49,920	1975	Oct			MITS	4	195.00		Altair 4K Static(2102) RAM Board	1
1976.00	40,704	1976	Jan			MITS	4	159.00		Altair 4K Static(2102) RAM Board	
1976.17	48,960	1976	Mar			MITS	16	765.00		Altair 16K Static RAM Board	
1976.42	23,040	1976	Jun			SD Sales	4	90.00		SD Sales 4K Static Board	
1976.58	32,000	1976	Aug				8	250.00		8K Static RAM Board	
1977.08	36,800	1977	Feb			TDL	16	575.00		S-100 16K	
1978.17	28,000	1978	Mar				64	1750.00		S-100 64K	
1978.25	29,440	1978	Apr				16	460.00			
1978.33	19,200	1978	May				16	300.00			1
1978.50	24,000	1978	Jul			Extensis	64	1500.00			
1978.58	16,000	1978	Aug				8	125.00			
1978.75	15,200	1978	Oct				32	475.00			
1979.00	10,528	1979	Jan	Interface Age	124		32	329.00			
1979.75	6,704	1979	Oct			SD Sales - Jade	64	419.00		S-100, SD Sales/Jade 64K Kit	10
1980.00	6,480	1980	Jan	Interface Age	121		64	405.00			

Princeton Architecture

1.Step (A): The

address for the instruction to be next executed is read into

2. **Step (B):** The controller "decodes" the instruction

3.**Step (C)**: Following completion of the instruction, the controller provides the address, to the memory unit, at which the data result generated by the operation will be stored.

•CPU can be either reading an instruction or reading/writing data from/to the memory.

•Both cannot occur at the same time since the instructions and the data use the same bus system

Harvard Architecture

DATA INSTRUCTION ∺ 1. CPU can **MICROPROCESSOR** MEMORY MEMORY both read an н м N-1 Instruction N-1 instruction s4a N-2 N-2 and perform a ٠ <u>s2a</u> data memory s3a Operation slb access at the s2b **'**8' 8 same time. D_{in}(a) 7 6 $\mathbf{\mathfrak{H}}$ 2. Faster for a 6 5 5 given circuit ALU ∕s4b 4 ١Z complexity \mathbf{D}_{out} 3 2 2 because sla D_{in}(b) PC Ъ 0 *instruction* <u>s</u>3b fetches and data access "PC" is the do not Address Action microprocessor's sla ······ slb: get instruction <u>contend</u> for a **Program** Counter s2a s2b: get first data input single s3a s3b: get second data input memory s4a s4b: store data output pathway.

Architecture by Instructions and Executions

- #CISC (Complex Instruction Set Computer)
 - Variety of instructions for complex tasks directly to hardware
 - Easy to translate high-level language to assembly
 - △Complex Hardware
 - Instructions of varying length
- #RISC (Reduced Instruction Set Computer)
 - ⊡ Fewer and simpler instructions
 - Each instruction takes the same amount of time
 - Less complex hardware
 - ➢Pipelined instruction execution (several instructions are executed in parallel)

CISC

#Architecture of prior to mid-1980's

△IBM390, Motorola 680x0, Intel80x86

- Basic Fetch-Execute sequence to support a large number of complex instructions
- **#**Complex decoding procedures
- Complex control unit
- **#**One instruction achieves a complex task

RISC

#Architecture of late 1980s -- present

- Control Con
- Better pipelining
- **#**Central to High Performance Computing
- **#**Advanced optimizing compilers
- **#Instructions are of a uniform length**

"Pipeline"?

#Instruction Pipeline

An **instruction pipeline** is a technique used in the design of **computers** to increase their instruction throughput (the number of instructions that can be executed in a unit of time). Pipelining does not reduce the time to complete an instruction, but increases instruction throughput by performing multiple operations in parallel.

The term pipeline is an analogy to the fact that there is fluid in each link of a pipeline, as each part of the processor is occupied with work.

Instr. No.	Pipeline Stage							
1	IF	ID	ΕX	MEM	WB			
2		IF	ID	EX	мем	WB		
3			IF	ID	ΕX	мем	WB	
4				IF	ID	EX	мем	
5					IF	ID	ΕX	
Clock Cycle	1	2	3	4	5	6	7	

Basic five-stage pipeline in a RISC machine (IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back). In the fourth clock cycle (the green column), the earliest instruction is in MEM stage, and the latest instruction has not yet entered the pipeline.

Processor Classification

Intel inside?

Kext PCs or Mobile Computing

Devices
Smart phones
Apple Processors
ARMs
Qualcomm
Mobile Devices – Smartphones, MP3, Digicam (on ARM)
Run on Intel's x86? --- Intel's wish; what happened to Lumina?

What's inside?

HiPhone: 1GHz-A4 microprocessor, 256MB Samsung RAM,

What's inside?

Samsung Galaxy

- Samsung Exynos quad-core A9 processor
- ☐ 1GB Memory
- ☐ Intel Wireless processor
- Broadcom Global Navigation Satellite System receiver

What's Inside?

HTC

What's inside?

XNokia Lumina

△1.4GHz Qualcomm CPU, 512MB RAM, 16GB Storage,

💭 โฮร่มห้อpน่อมีร.

INTEL VS. ARM ("Advanced RISC Machine")

ARMs

- No chip hardware license only (powerful and variety of licensees) → cell phones etc
- SoC device (CPU + I/O + Peripherals + Memory + etc)

INTEL

- Does not want to License x86 (Lesson from AMD)
- ➢ New approach for SoC: Atom based X86 SoC
- **Recent Stride with "Intel Atom Inside"**
 - Main processor for Laptops and Netbooks and Tablets
 - Motorola Phones: Razr
 - △ Apple computers with Intel chips

Intel Atom

(int At	tel Om [®] _{inside®}
duced	2008–present

Produced	2008-present					
Common manufacturor/s)	Intel					
manufacturen(s)						
Max. CPU clock	800 MHz to 2 GHz					
FSB speeds	400 MHz to 667 MHz					
Min. feature size	45nm					
Instruction set	x86, x86-64 (not for the N and Z series)					
Cores	1,2					
Package(s)	441-ball µFCBGA					
Core name(s)	Silverthorne Diamondville					

Intel 386 - Datasheet

intəl

Intel386[™] SX MICROPROCESSOR

24

- Full 32-Bit Internal Architecture
 - 8-, 16-, 32-Bit Data Types
 - 8 General Purpose 32-Bit Registers
- Runs Intel386TM Software in a Cost Effective 16-Bit Hardware Environment
 - Runs Same Applications and O.S.'s as the Intel386™ DX Processor
 - Object Code Compatible with 8086, 80186, 80286, and Intel386™ Processors
- High Performance 16-Bit Data Bus
 - 16, 20, 25 and 33 MHz Clock
 - Two-Clock Bus Cycles
 - Address Pipelining Allows Use of Slower/Cheaper Memories
- Integrated Memory Management Unit
 - Virtual Memory Support
 - Optional On-Chip Paging
 - 4 Levels of Hardware Enforced Protection
 - MMU Fully Compatible with Those of the 80286 and Intel386 DX CPUs
- Virtual 8086 Mode Allows Execution of 8086 Software in a Protected and Paged System

- Large Uniform Address Space 16 Megabyte Physical
 - 64 Terabyte Virtual
 - 4 Gigabyte Maximum Segment Size 🦛 32

DIR

Ιь

46

- Numerics Support with the Intel387TM SX Math CoProcessor
- On-Chip Debugging Support Including Breakpoint Registers
- Complete System Development Support
 - Software: C, PL/M, Assembler
 - Debuggers: PMON-386 DX, ICETM-386 SX
- High Speed CHMOS IV Technology
- Operating Frequency:
 - Standard (Intel386 SX -33, -25, -20, -16) Min/Max Frequency (4/33, 4/25, 4/20, 4/16) MHz
 - Low Power (Intel386 SX -33, -25, -20, -16, -12) Min/Max Frequency (2/33, 2/25, 2/20, 2/16, 2/12) MHz
- 100-Pin Plastic Quad Flatpack Package (See Packaging Outlines and Dimensions #231369)

Intel 386 - Datasheet

Intel386[™] SX Pipelined 32-Bit Microarchitecture

Intel 386 - Brief

00 66 88

 \cap

HLDA

HOLD

READY

000000

A20 A19

A18

A17 Vcc

'cc /ss /ss A15 A14 A13 V_{SS}

A11 A10 - A9 A8 V_{CC} A7 A6 A5

> A4

D A3 **D** A2

53

5:

- Address: A23- A1 H
 - BLE# and BHE# ("Byte Enable")
- Data: D15 D0 H
- Control Ħ

				VSS VSS CLK2 ADS#	13 14 15 16	TOP VIEW
Address	Data	Control	N/C	Vcc	V _{SS}]
$\begin{array}{ccccccccc} A_1 & 18 \\ A_2 & 51 \\ A_3 & 52 \\ A_4 & 53 \\ A_5 & 54 \\ A_6 & 55 \\ A_7 & 56 \\ A_8 & 58 \\ A_9 & 59 \\ A_{10} & 60 \\ A_{11} & 61 \\ A_{12} & 62 \\ A_{13} & 64 \\ A_{14} & 65 \\ A_{15} & 66 \\ A_{16} & 70 \\ A_{17} & 72 \\ A_{18} & 73 \\ A_{19} & 74 \\ A_{20} & 75 \\ A_{21} & 76 \\ A_{22} & 79 \\ A_{23} & 80 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ADS# 16 BHE# 19 BLE# 17 BUSY# 34 CLK2 15 D/C# 24 ERROR# 36 FLT# 28 HLDA 3 HOLD 4 INTR 40 LOCK# 26 M/IO# 23 NA# 6 NMI 38 PEREQ 37 READY # 7 RESET 33 W/R# 25	20 27 29 30 31 43 44 45 46 47	8 9 10 21 32 39 42 48 57 69 71 84 91 97	2 5 11 12 13 14 22 35 41 49 50 63 67 68 77 78 85 98	

Memory Size and Address

A0 1 32 VDD A17 2 31 A16 A15 3 30 A18 A13 4 29 AWE A8 5 28 A14 A7 6 27 A9 A6 7 26 A10 A5 8 25 A12 A4 9 24 /OE A3 10 23 A11 A2 11 22 /CS A1 12 21 D0 D7 13 20 D1 D6 14 29 D2 D5 15 18 D3 VSS 16 17 D4	Do Di 37 Ai Ai Ao 244 HIHH
1 N/C Vec 29 2 A12 WEX 27 3 A7 CS2 28 4 A8 A9 24 5 A4 U2 A11 7 A3 RAM A10 9 A1 CS1X 20 10 D0 D7 19 11 D1 D5 17 12 D1 D5 15 14 gnd D3 15	$\begin{array}{c} A^{2} \\ A^{3} \\ A^{3} \\ \end{array} = \begin{array}{c} 3 \times 8 \\ \end{array} = \begin{array}{c} - \\ - \\ - \\ \end{array}$
1 16 Vcc Din 2 15 CAS WE 3 14 Dout RAS 4 2118 13 A3 A0 5 12 A4 A1 6 11 As A2 7 10 A6 Vdd 8 9	90

 $\mathbf{z}\mathbf{c}$

Memory Size and Address 2

Memory Interface

Fan-out

32

Memory Interface

- Interface between a processor and a (pair) of memory (of smaller than the maximum memory space)
- ₩ Where do we place the memory in the memory space? → "MEMORY DECODING"
- How to access two MEM locations at the same time (for 16-bit Data bus)?
 - S MEM --- Byte Access (8 bits)
- 🖌 💪 UDS and LDS --- Motorola
- ↓ G BLE and BHE --- Intel

32-bit access with backward compatibility

36

Memory Address 8

Ŧ

#Address location (first and last addresses)?

Memory Address 8

38

Memory Address 8 ---?

Control Con

Direct Connection between Process and Memory Higest Address Lowest Address

Memory Address 16

