SCOUTING DRONE PROJECT

SPONSORED BY: RAYTHEON ADVISORS: DR. RAWAT, DR. LESLIE

PRENTOWORK

Computer Engineering 25'

Jaden Samuels

Computer Engieering 25'

Computer Engineering 25'

Tehya Gaines

Leule Bantywalu

Electrical Engineering

AGENDA

- Introduction
- Background
- Problem Formulation
- Constraints
- Real-world Applications
- Equipped Sensor Design Metrics
- Product Justification
- Final Product Specification
- Conclusion

INTRODUCTION

- Annual Raytheon Autonomous Vehicle Competition (AVC)!
 - Sponsored by Raytheon, an RTX business, in partnership with universities across four regions.
- Purpose of the Competition:
 - Provide students with real-world problem-solving opportunities using Unmanned Vehicle systems.
 - Encourage creativity, innovation, and teamwork in a professional environment.
- Benefits for Students:
 - Gain hands-on experience in project management and problem-solving.
 - Apply technical and collaborative skills to open-ended challenges.
- Benefits for Raytheon:
 - Identify and assess top graduates.
 - Strengthen relationships with universities.
 - Promote corporate branding and explore emerging technologies.

BACKGROUND

Background of the Project

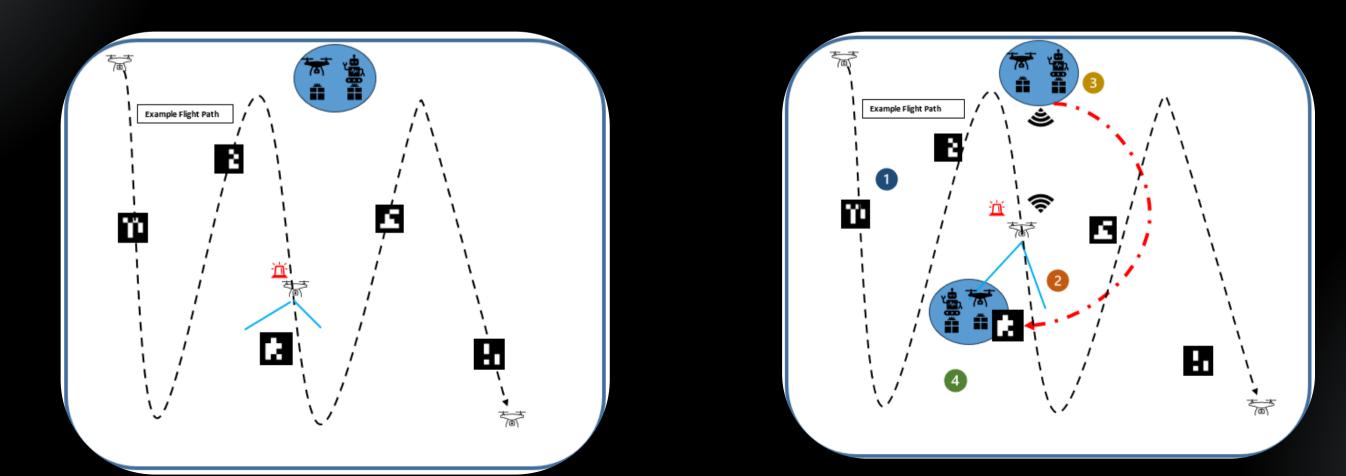
- Focus: Raytheon AVC "Mission Full Send."
- Objective: Develop autonomous UAV systems for real-world tasks.
- Tasks:
 - Scout UAV: Map and identify target zones.
 - Delivery UxV: Deliver payloads using Scout UAV data.
- Purpose: Drive innovation, teamwork, and industry readiness.

Dissatisfied Conditions

- Limited autonomy and target identification in current systems.
- Inefficient vehicle-to-vehicle communication.
- Lack of adaptability to varying environments.

Customer Needs

- Fully autonomous systems with reliable peer-to-peer communication.
- Operable in diverse conditions, with or without GPS.
- Cost-effective design within a \$5,000 budget

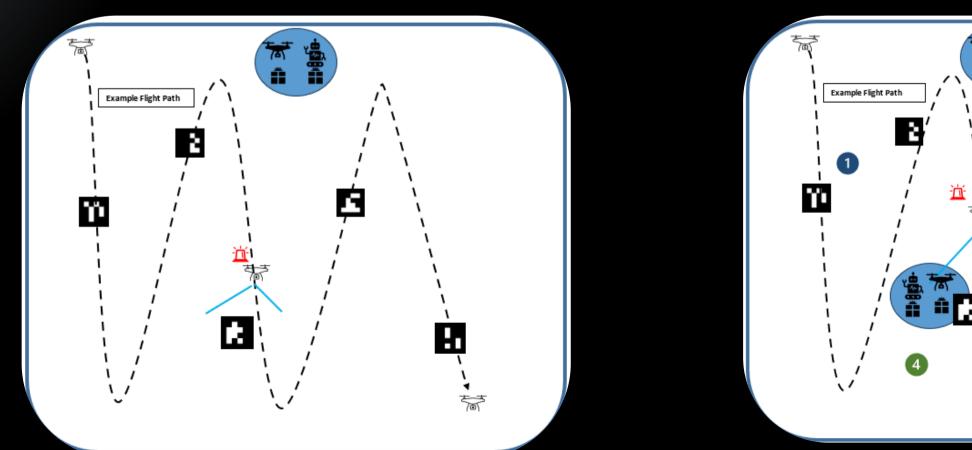

PROBLEM FORMULATION

Problem Statement

- Develop an autonomous UAV systems for navigation, target identification, and payload delivery.
- Overcome challenges like limited communication, adaptability, and operational efficiency.

Design Requirements - Product for Software Spec

- Functional: Autonomous navigation, peer-to-peer communication, target identification.
- Performance: Timely payload delivery, flexible to field variations.
- System: Support GPS/non-GPS environments, modular architecture.


CONSTRAINTS AND REGULATIONS

Constraints of Standards and Regulations

- Safety: FAA compliance, kill switches, weight limits (<55 lbs).
- Operations: Geofencing, RTK/NTRIP for accuracy high-precision GPS positioning).
- Budget: \$5,000 maximum for hardware/software.

Constraints of Society, Culture, and Environment

- Societal: Ensure public safety, promote STEM education.
- Cultural: Foster diversity through regional university partnerships.
- Environmental: Operate reliably in diverse conditions with minimal impact

REAL-WORLD APPLICATIONS

Scenario:

• Many pet owners struggle to locate lost pets, leading to prolonged searches and distress

Solution:

A scouting drone equipped with image processing and recognition would be able to efficiently locate missing animals by scanning large areas in a shorter time.

Scenario: There are many cases where there is a shipwreck or plane crash and people go missing and are unacounted for

Solution: The drone will be able to search for key points of interest like floating debris, or SOS signs and send a signal to the nearest rescue search team or coast guard.

EQUIPPED SENSOR DESIGN METRICS

Criteria	Ultrasonic TOF Sensor	IMU (Inertial Measurement Unit)
Cost	4 - Generally affordable, though precision models can increase the cost	5 - IMUs are widely available and typically low-cost for standard performance
Range	2 - Limited range (typically 1-4 meters), suitable only for short distances	5 - Measures orientation and motion over a large range
Accuracy in Positioning	3 - Accurate for close distance but affected by the environment	4 - Provides high accuracy in orientation and motion changes, though subject to drift over time
Environmental Sensitivity	2 - Impacted by temperature, humidity, and wind; interference from sound	4 - Relatively low sensitivity to environmental changes but may be affected by magnetic fields
Real-time Responsiveness	3 - Slower response rate, not ideal for high-speed environments	5 - Extremely fast response rate, suitable for rapid motion and orientation tracking
Power Consumption	3 - Moderate; needs constant power for emission and reception of sound waves	5 - Low; typically requires minimal power for consistent operation
Ease of Integration	4 - Fairly straightforward to install, but may require careful positioning	5 - Small, lightweight, and easy to integrate with standard drone control systems
Obstacle Detection	5 - Effective for short-range obstacle detection (directly below or in front)	1 - Not capable of detecting obstacles; designed for motion and orientation sensing only
Altitude Measurement	4 - Accurate at low altitudes (when above ground)	3 - Provides altitude estimation but typically requires data from additional sensors (e.g., GPS) for accuracy
Weight and Size	3 - Moderate, can be bulky depending on the model	5 - Compact, lightweight, ideal for drone use without adding excess weight
Reliability Over Time	3 - Sensitive to wear and environment; calibration may be needed	5 - Highly reliable, stable measurements over time
Application Versatility	2 - Specialized for short-distance measurements and obstacle detection	5 - Versatile for any scenario requiring motion or orientation data, useful across various applications

Total Score out of 60: • TOF Sensor - **38** (3.1 on 5 scale) • IMU Sensor - **52** (4.3 on 5 scale)

Based on 12 Criterias :

• Cost, Range, Power Consumption, Ease of Integration, Obstacle Detection, Altitude Measurement etc...

PRODUCT JUSTIFICATIONS

Inertial Measurement Unit (IMU) Sensor

WHAT?

Measures an object's motion and orientation using accelerometers and gyroscopes. It provides realtime data for precise navigation and control in drones, robotics, and other systems.

WHY?

- control in unmanned drones.
- open and confined spaces.
- across varied environments.
- measurement.

• Reliable Real-Time Data: Provides accurate stability and

orientation information, critical for precise navigation and

 Compact and Lightweight: Ideal for drones, minimizing power consumption and optimizing space for additional equipment. Independence from Environmental Factors: Unaffected by conditions like wind, ensuring versatile performance in both

Enhanced Performance: Improves navigation and control

 Integration with LiDAR: Maximizes efficiency and capabilities, combining precise orientation data with advanced distance

• Optimal Solution: Considering these advantages, the IMU is the more viable option to achieve our goals effectively.

FINAL PRODUCT SPECIFICATIONS

Drone:

- Model: DJI Mavic 3 Pro Fly More
- Camera & Imaging: 20 MP CMOS sensor, 4K video (up to 5.1K)
- Battery & Power: 5000 mAh lithium polymer, <u>15.4V, (<43 minutes of flight time)</u>. ightarrow
- Performance & Control: GPS/Galileo/BeiDou navigation, obstacle avoidance system

Raspberry Pi:

- Model: Raspberry Pi 4 or Raspberry Pi Zero 2 W (lightweight).
- Purpose: Serves as the central processing unit for the UAV, running the flight controller and managing sensor data.

IMU Sensor:

- Model: MPU6050, BNO055, or equivalent.
- Purpose: Measures acceleration, angular velocity, and orientation for stabilization and navigation.

LiDAR Module:

- Model: Garmin LIDAR-Lite v3 or RPLIDAR A1.
- Purpose: Provides distance measurement and obstacle detection.

