Department of Electrical Engineering and Computer Science
Howard University

Washington, DC 20059

EECE 404: Senior Design 11
Spring 2024

Final Report
By:
Robert Jones, Alayen Pratt, Ahmad Abdur-Rahman, Ayron Fears, Karci Gibson

Instructor: Charles Kim, Ph.D.

Date Assigned: 4/3/2024 Date Submitted: 4/23/2024



Summary/Abstract:

This project aims to improve autonomous vehicle design with ORB-SLAM2. ORB-SLAM2 is a
versatile and accurate Visual SLAM solution able to compute in real-time the camera trajectory and a
sparse 3D reconstruction of the scene in a wide variety of environments. This was planned to be
implemented onto a Raspberry Pi 4B with more hardware support from the Cyclone V architecture-based
FPGA. This hardware design optimizes accuracy and precision, and with this system, it achieves rapid
localized mapping critical for applications such as commercial driving and real-time navigation. To
complete this design we needed to gather the required materials: Intel RealSense D435i camera, Arduino
MKR Vidor 4000, Raspberry Pi 4 Model B, SunFounder PiCar-V Kit, Circuit Wiring, 12V Battery Pack,
and Ultrasonic Sensors. There are some environmental, socio-cultural, and compliance constraints that we
took into consideration when drafting our solution design, like U.S. Roadways, distrust in Al, and traffic
laws. After this, we started our Top Solution design. We finalized our model with the Intel Realsense
Camera at the front of the vehicular frame. The battery pack was placed and screwed on the bottom of the
frame, while the hardware components were fitted and stacked appropriately on the top of the frame.
Also, the ultrasonic sensors are attached to the sides of the frame. A picture of the design is shown below
in the report. This design optimally reassured that the live feed from the camera was being processed by
the Raspberry Pi 4B and Arduino.

Our agile workflow involved three sprints, each lasting three to four weeks, to complete our
project. The first sprint focused on hardware retrieval and assembling the RC car, the second showcased
camera usage, and the final sprint confirmed the car's functionality. Weekly in-lab meetings and Zoom
meetings were used to discuss progress and agendas. The project involves assembling a car frame with a
Raspberry Pi, Arduino, and Intel camera. The Arduino FPGA is housed on an extra platform. The
software foundations were established using CMake, and the robot operating system (ROS) was used for
control. Data was collected from ORB-SLAM?2, and in ROS we attempted an autonomous navigation
stack with a transformation offset tree, sensory data, odometry data, a base controller script, and a map
server. A Graph Neural Network was created to solve the Bundle Adjustment problem. The team
attempted to develop an autonomous vehicle using hardware design principles to improve processing time
in software-centric approaches. We propose an FPGA with a GNN to optimize 3D scene reconstruction
maps and an RGB-D camera for depth information. The remote control prototype serves as a proof of
concept for autonomous vehicle design, with future research focusing on total development, image
processing, and real-world simulations.



Problem Statement:

We aim to improve autonomous vehicle design with ORB-SLAM?2 on a Raspberry Pi 4B and a
Cyclone V architecture-based FPGA. Our implementation significantly improves processing, execution
timing, and SWAP-related tradeoffs; hence prioritizing human safety. By emphasizing hardware-centric

design, we optimize precision, efficiency, and navigation, overcoming limitations imposed by
software-based approaches. Utilizing hardware-driven principles like pipelining, our system achieves
rapid localized mapping critical for applications such as commercial driving and real-time navigation.

Design Requirements:

Design Requirement Form

Date: 10/1/2023
Project SLAM
Name/Title:

Team Advisor |Dr. Seabron

Project's Implementation of ORB-SLAM2 algorithm on an autonomous vehicle
Goal/Scope
Team Alayen, Ayron, Robert, Karci, Ahmad
Members
4-sentence We plan to introduce a new standardization of autonomous vehicular design using the
problem ORB-SLAM2 algorithm on a Raspberry Pi and FPGA. Our implementation will
statement drastically improve processing and executable timing in addition to SWAP-C-related
trade-offs and overall human safety. It will further address the need for a
hardware-centric design to optimize the precision, efficiency, and navigation that is
constrained by software-based designs. Our approach will be able to map its
environment at the necessary speed for commercial driving because of its
hardware-driven design, which utilizes principles such as pipelining in its operation.
Requirements [Items Weight Quantity
1. Product Intel Realsense D435i Operating Range:
Specification |Camera (Min-Max) ~.3m - 3m
Weight: Approx. 60-65
grams
Arduino MKR Vidor 4000 |Weight: 43.5 grams




Raspberry Pi 4 Model B Weight: 46 grams 1
4GB Ram
Sunfounder PiCar-V Kit Weight: 839 grams 1
Circuitry wiring Weight: 3-10 grams 1
12V Battery Pack Weight: 0.5-2 pounds 1
Ultrasonic Sensor Operating Range: 2
(Min-Max) ~ 13ft
2. Constraints |Environmental U.S. Roadways, Emissions,
Constraints Object/Hazard Recognition
Socio-Cultural Social distrust in
Constraints autonomous technology,
Differing views on vehicle
design preferences
Compliance (Rules, National Highway Traffic
Regulations, and Safety Administration,
Standards) Lack of human
interpretation, Variation in
regional traffic laws

Top Solution Design :

Here we have our model which displays the Intel Realsense D435i camera (1) on the top of the
vehicular frame (2) this will record/capture objects on the camera in 1080p in addition to the IR
radar depth imaging. These images are then processed in the Raspberry Pi 4B (10) using the
ORB-SLAM2 library and FPGA-based GNN to produce the most accurate rendition of a 3D scene map.
The camera gyroscope and accelerometer are then used to map the vehicle’s location and spatial status via
the Cyclone V FPGA (5). The ultrasonic sensors (4) are also connected to the Raspberry Pi(10) and
powered by supplementary material such as the 12V Li-lon Battery. They will emit a chirp that will detect
the distance of nearby objects and send this data to the Raspberry Pi(10) for navigation. The Intel
Realsense D4351 camera captures static objects such as the guardrail (11), pothole (9), trees (7), and
expressway signs (6), these images are then processed and used as a guide to keep the vehicular frame (2)
positioned within its lane. Together, the Intel Realsense D4351 camera and the ultrasonic sensors (4) work
collaboratively to determine the vehicle's position and distance from nearby
objects such as the person (12) and the truck (8). They quickly send this data back to the Cyclone



V FPGA to ensure enough processing and response time to avoid collision.




Component level

Intel Realsense
camera

Vehicular
base

FPGA

PCBs

Motors




Agile Workflow:

Our agile workflow consisted of three different sprints that we split into three to four-week
increments between each sprint for the allotted tasks to ensure the completion of our project. The initial
sprint was focused on retrieving the hardware for our products and assembling the RC car. The following
sprint highlighted the successful usage of the camera along with the car and lastly, the final sprint tested
and confirmed the car was fully operational with all the targeted functionality. To complete these sprints,
we used a weekly implementation plan of in-lab meetings twice a week with each subsystem team having
specific days and times. Also, we hold a Zoom meeting at the end of each week with all team members to
discuss the upcoming agenda of the following sprints and progression from the previous ones.

To complete the incremented set of goals, we constructed weekly developmental tasks that would
allow us to progress through each sprint as efficiently as possible. For the initial sprint, our main priority
was the physical assembly and ensuring the car’s base would fit all the desired components. Our first
weekly task was to acquire the hardware parts necessary for the completion of the project which was a
fairly easy task. Once acquired, the hardware subsystem team developed a layout design of the placement
of each component on the vehicular base that would best utilize the limited spacing available . By the end
of the three week increment allotted for sprint one, we were able to successfully complete the physical
assembly and ensure that each component would be properly spaced for optimal performance and
accommodate necessary wiring. The following sprint was an integral portion of our project that was
primarily focused on the software subsection of the project. The main goal for sprint two was to ensure
the connectivity and functionality of the Intel realsense camera with the car. Throughout the first two
weeks assigned for this sprint, our team first established that the camera was operational and achieved the
desired tasks so that we could move on to testing the data points it collected. Our team conducted several
tests of the camera’s data points to verify their effectiveness for optimal navigation. During the final week
of sprint two, establishing the USB connection of the Raspberry Pi with the camera was the last step
necessary for us to progress to the final sprint. The concluding set of our weekly tasks began with
ensuring that the connection between the Raspberry Pi and the FPGA was secure and that all the
components functioned properly as we anticipated. Once this was verified, the team was able to fully test
the our 3-D reconstruction pipeline and confirm that the vehicle is able to accurately map its own
environment autonomously at a highly efficient rate. The final weekly development task was to check the
vehicle’s ability to navigate and respond to changes in surroundings and adaptability to environmental
chaos. To do so, we conducted several test touch and operation performance analysis on the vehicle
before completing our final sprint.

Project Implementation:

Since the car frame came as a kit complete with motors, servos, PCBs, screws, and tools, the
electrical and mechanical tasks for the project were already planned out. The frame assembly with the
Raspberry Pi, Arduino, and Intel camera finished quickly. Due to limited space available on the PiCar-V
frame for all our experiment’s components, we created an extra platform fixed to the top of the car which
houses the Arduino FPGA. We moved on to establishing the software foundations for our experiment,
creating a User-Interface with the camera and testing the official ORB-SLAM?2 library on our Raspberry
Pi 4B. Most libraries/dependencies for the Intel camera and ORB-SLAM?2 were built with CMake, an
open-source platform for software packaging and build automation. When building ORB-SLAM?2, we



encountered dependency version conflicts based on our C++ compiler and Operating System (Raspbian
OS 10). Certain commands and operators were not recognized and had to be replaced. To process the Intel
D435i camera’s RGB and Depth input we used CMake to make an executable wrapper for linking the
camera to ORB-SLAM?2. We tested the camera’s depth input from a laptop by taking videos of numerous
objects such as water bottles, chairs, and books. The camera is powered and tethered to the car utilizing
the Pi 4B’s USB 3.0 port. This enabled the camera to transmit 720p images to the Pi 4B quickly. The
Arduino FPGA is connected to the Pi 4B using the Inter-Integrated Circuit (I2C) communication protocol.
It involves creating a serial bus interface using Serial Data (SDA) and Serial Clock (SCL) ports from both
devices in a sequential circuit.

To establish control of the car systems, we used the Robot Operating System (ROS) and created
scripts to format user input from the keyboard and output calculated velocity controls from the Pi to the
PWM and moter controllers via an independent I2C bus. Due to the ease of use when integrating external
packages in ROS, we also used it to interface with ORB-SLAM?2 and the D435i camera. We experienced
numerous issues with the camera on ROS, such as dependency conflicts, sensor drift, and random loss of
transmission. Through calibration and rebuilding packages, we fixed most of the issues with the camera
and began gathering data from ORB-SLAM2. We extracted point clouds, a set of 3D map points in space;
and camera/keyframe pose trajectory, 3D map points and rotation coordinates based on camera origin.
With this configuration, we were able to map our environment while driving remotely from a computer
efficiently. We started working toward autonomous navigation by satisfying all data requirements from
ROS: a transformation offset tree between the camera and car frame, sensory data from the camera,
odometry data from the camera, a base controller script in Python, and a map server from ORB-SLAM?2.

fcamerajreaisense2 camera_ manager/bond

T -

ROS data flow for ORB-SLAM?2

3 Oy Y S oy W —
—— NKse L mabmapiodom
P o B e Tt \
=




Generated 2D grid map

As we approached the semester's end, we focused on implementing a GNN for solving the Bundle
Adjustment problem. We tried 3 different Python Neural Network libraries to make our Graph Neural
Network. We tried Pytorch, Graph-Nets, and Tensorflow-GNN. We used Tensorflow-GNN, a new library
built by Google’s DeepMind team. We used TF-GNN because it had the most comprehensive and
accessible set of tools for creating a custom dataset despite being released this year. We constructed our
data into a graph structure with keyframes and point clouds represented as nodes and the edges being IDs
that map a single keyframe to ~500 map points in a point cloud. In the future, we will work on expanding
the data representations in our graph. There is an approach we want to replicate that uses aggregator
functions to calculate other parameters that could be useful for the bundle adjustment problem. We
created a starter network that used dense layers and the relu function to calculate the next most
statistically probable state of a single map point coordinate (‘x”) using the other 9 coordinates.
Unfortunately, we have run out of time to complete our implementation of the GNN Bundle Adjustment
as a part of the project and this report. While we plan to finish over the summer, we have made strides in
completing the last major portions of the project.



KF Vartex
Input Output pradicgtor

Graph Graph
Vertax v . ‘deKF e
Keyframe Next-State Rt I|.I LM Vertax 3
Vertex Keyframe Vertex |II Flrﬂdil.'.l[:f
Verlax .l.-.'.l'-l' —] A il . ""':ErM

L -
II"-. I". !
@' LM Verlex _]__%- 5.-- KF Vertax
Yol aggragatar
_--'_'_'-'_'_
Edge E,, — e e

aggregator LY
Io¢
\ / predictor

KF Predictor,

Landmark
Vertex /

Grouped
IDs

L
m
a2
3

Edge

1

Timestamp

Current graph structure Objective graph structure

Conclusion:

Our approach to emerging technology entailed utilizing hardware design principles to innovate a
rapidly saturating field. The emergence of artificial intelligence has led to the introduction of many
technological advancements, including computer vision and autonomous systems. One of these
advancements, autonomous systems, incorporates integrated systems to accomplish tasks typically done
by humans, such as utilizing a forklift or performing maintenance. Autonomous driving is one of the more
complex tasks, and many attempts have been made to standardize and commercialize it. Many of the
approaches utilize software-centric designs to accomplish this. These designs have far too much
processing time to respond in near real-time, let alone real-time, which would be necessary to drive on the
road with other drivers safely. To improve this bottleneck issue in processing, we approached our design
utilizing hardware design principles, specifically, using an FPGA with a GNN trained to solve the Bundle
Adjustment problem to optimize slam-generated 3D scene reconstruction maps faster than the
Levenberg-Marquadt method. Our design used an RGB-D camera to capture depth information in
addition to the live camera feed.

Using a Raspberry Pi 4B as our primary processor proved inefficient in processing the images in
the ORB-SLAM?2 library. Hence, our approach using an FPGA would substantially reduce the bottleneck
in map processing. Throughout the sprints, we developed the vehicular base, connected the kit’s PCBs
and Raspberry Pi 4B, and developed ROS packages to establish remote control of the vehicle. We planned
to use the Vivado High-level synthesis tool to convert a developed graph neural network from C++ into
VHDL to increase the processing speed of the map points from the SLAM algorithm. Time constraints
and problems with synthesizing the generated VHDL using Quartus halted the optimization of the pin
allocation of the FPGA.

However, our car was able to be remote-controlled. The autonomous node was developed to
enable the vehicle to move autonomously in software and work on optimizing the VHDL is still being
done and will be done entirely in the coming weeks. Furthermore, we acquired a 12V 5A power supply to
ensure all components are supported regarding power consumption and can still navigate as an
independent vehicle. Our vehicle is well-researched and will serve as a well-produced proof of concept
prototype as an autonomous vehicle that utilizes hardware to improve the insufficiencies of the



software-driven approaches to an autonomous vehicle using commercially available components. Future
works and research include developing the vehicle in its totality, pipelining the processing of images, and
testing the vehicle response time in real-world simulations to achieve the real-time reaction necessary to
drive on national roadways safely. Our current prototype is a significant first step in developing the
standard for autonomous vehicle design, which will undoubtedly emerge in the coming years. We intend
to continue our work and constantly improve our design until it accomplishes the declared intent to
develop the standard design of autonomous vehicles.

References:

Marquardt, Donald W. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Journal of
the Society for Industrial and Applied Mathematics, vol. 11, no. 2, 1963, pp. 431-41. JSTOR,
http://www.jstor.org/stable/2098941. Accessed 23 Apr. 2024,

LEVENBERG, KENNETH. “A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR
PROBLEMS IN LEAST SQUARES.” Quarterly of Applied Mathematics, vol. 2, no. 2, 1944, pp. 164—68.
JSTOR, http://www.jstor.org/stable/43633451. Accessed 23 Apr. 2024.

Liu, Qiang, et al. “n-BA: Bundle Adjustment Hardware Accelerator Based on Distribution of 3D-Point
Observations.” LE.E.E. Transactions on Computers/IEEE Transactions on Computers, Jan. 2020,
1¢.2020.2984611.

Qin, Shuzhen, et al. “n-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation
Optimization.” /EEE, Apr. 2019, https://doi.org/10.1109/fccm.2019.00024.

Nikolic, Janosch, et al. “A synchronized visual-inertial sensor system with FPGA pre-processing for
accurate real-time SLAM.” IEEE, May 2014, https://doi.org/10.1109/icra.2014.6906892.

C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” in Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2013.

https://ieeexplore.ieee.org/document/6696650

Tanaka, T., Sasagawa, Y., & Okatani, T. (2021, October). Learning to Bundle-adjust: A Graph Network
Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv48922.2021.00619

Ferludin, O., Eigenwillig, A., Blais, M., Zelle, D., Pfeifer, J., Sanchez-Gonzalez, A., Li, W. L. S.,
Abu-El-Haija, S., Battaglia, P., Bulut, N., Halcrow, J., Gongalves, D. A. F. M., Gonnet, P., Jiang, L.,
Kothari, P., Lattanzi, S., Linhares, A., Mayer, B., Mirrokni, V., . . . Perozzi, B. (2022, July 7). TF-GNN:
Graph Neural Networks in TensorFlow. arXiv.org. https:/arxiv.org/abs/2207.03522



https://doi.org/10.1109/tc.2020.2984611
https://doi.org/10.1109/fccm.2019.00024
https://doi.org/10.1109/icra.2014.6906892
https://ieeexplore.ieee.org/document/6696650
https://doi.org/10.1109/iccv48922.2021.00619
https://arxiv.org/abs/2207.03522

