Department of Electrical Engineering and Computer Science
Howard University

Washington, DC 20059

EECE 404 Senior Design Research

Fall 2021 - Spring 2022

Memory Forensics using Volatility

Wys_ih y dngiqned Long el sl e

uns:gn!d m‘ﬂ

mtﬂ“-’-“
oo vl (] ‘i* e
{ peturn ’Q’

(1“. 4 i saarge) |
geintint T S et

M\} -

By

Patience Jato, Davia McKenzie, Roli Bolorunfe, Obi Oguh

Instructor:; Dr. Charles Kim

Date Submitted: April 20, 2022

Summary

As technology and development continues to grow and become more innovative the
world is now seeing a shift in our society where the Internet of Things (IOT) and embedded
systems has become the norm in our everyday lives. These systems are either computers or
utilize the internet. From communication, transportation, entertainment, retail, medical practices
etc, the world can see how dependent our society has become on such technology. With that
being said, everyone runs into the risk of cyber crimes and activities that can jeopardize
operation on large or small scales. Thus, it has increased the need for protection and security.
Cybersecurity practices such as Memory Forensics have the capabilities of capturing the memory
of compromised devices and performing analysis to identify unusual activities. Our research is a
continuation of last year’s research. They were able to determine which memory forensic tool
provides more efficiency while we delved into the methods of which we will perform Memory
Forensics on our system. Developing methods that would be efficient and effective to detect

suspicious activity or malware within our RAM.

Problem Statement

Since commonly known attack methods have become increasingly sophisticated, we must
determine which memory forensic method would provide the best physical memory coverage
against those common attacks in order to support secure operational environments.

The project goals are to research and gain a deeper understanding of Memory Forensics,
its operation and importance. This is to gain an understanding of RAM and how the processes
communicate with one another to depict the operations or functions within a system. With such
information, the team will determine a methodology that will be used to detect suspicious

activity, potential malware, within a computer systems’ memory.

Design Requirement

To be able to perform research of Memory Forensics there are several financial, software
and hardware requirements. This project required a budget of $200 to cover the expense of a
hard drive that allowed us to process the data captured from memory, as well as additional
software tools. For software requirements, the computers of team members needed to be
compatible with our intended Memory Forensic Tool, Volatility 3. This means that, the
computers needed to have at least a Windows 10 operating system. The project required the
downloading of FTK Imager which was used to capture the RAM, memory of the system.
Python version 3 was also needed to run certain commands as well as Git Bash. It was also
required for us to have a system processor that was at least 2.5 GHz Dual Core. For hardware
requirements, the team needed at least 16 GB RAM to capture the memory and 6 GB to run other
applications and software.

Additionally to gain understanding of Memory Forensic the book “The Art of Memory
Forensics” provides the team with the tools and information that set the basis of the research. It
was also important to understand the industry regulations and standards with the United States,
NIST and CFFT. It is also very important to understand the Environmental and Social

Responsibility of Memory Forensics and how our data could be impactful.

Solution Design

Using Memory Forensic the team generated two methods that could be used to gather
information regarding the functions and process of a captured memory. Using these methods the

team was able to test on a clean system and on a “compromised” system that would mimic the

behavior or activity of malware. Comparing and contrasting the activities in the process as well

as the methods that would be more efficient.

PPID Offset(V) Threads Handles Sessionld ‘Wow64 C ExitTime File Output
0 System 0xe184476b4040 209 N/A FALSE 2022-04-07 9:51:44 N/A Disabled
4 Registry E184479E4040 4 NA FALSE 2022-04-07 19:51:42 NA Disabled
4 Smss.exe E1844993D040 2 N/A FALSE 2022-04-07 19:51:44 N/A Disabled

572 csrss.exe E1844D866140 12 0 FALSE 2022-04-07 19:51:46 N/A Disabled
572 wininit.exe E1844E88C080 1 0 FALSE 2022-04-07 19:51:48 N/A Disabled
816 CSTSS.exe E1844E890140 14 1 FALSE 2022-04-07 19:51:48 N/A Disabled
824 services.exe E1844E622280 6 0 FALSE 2022-04-07 19:51:48 N/A Disabled
824 Isass.exe EI1844E90E0CO 10 0 FALSE 2022-04-07 19:51:48 N/A Disabled
900 svchost.exe E1844E9802C0 12 0 FALSE 2022-04-07 19:51:48 N/A Disabled
824 fontdrvhost.ex E1844E981080 S 0 FALSE 2022-04-07 19:51:48 NA Disabled
900 svchost.exe E1844F019340 11 0 FALSE 2022-04-07 19:51:48 N/A Disabled
900 svchost.exe E1844F0412C0 3 0 FALSE 2022-04-07 19:51:48 N/A Disabled
816 winlogon.exe E1844F059080 6 1 FALSE 2022-04-07 19:51:48 N/A Disabled
652 fontdrvhost.ex E1844F0C21C0 5 1 FALSE 2022-04-07 19:51:48 N/A Disabled
652 LogonULexe E1844F139240 0 1 FALSE 2022-04-07 19:51:49 19:52:01 Disabled
652 dwm.exe 0xe1844f13b100 14 1 FALSE 2022-04-07 19:51:49 NA Disabled
900 svchost.exe E1844F140340 2 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F142340 7 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F1340C0 3 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F19F300 4 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F19E080 1 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F20A2C0 6 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 IntelCpHDCPSve E1844F208080 3 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F226300 16 0 FALSE 2022-04-07 19:51:49 NA Disabled
900 svchost.exe E1844F250340 8 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F255080 6 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F2572C0 3 0 FALSE 2022-04-07 19:51:49 N/A Disabled
900 svchost.exe E1844F259340 2 0 FALSE 2022-04-07 19:51:49 N/A Disabled

Figure 1: Data generated using the PsCommands (PsList)

PID PPID Offset(V) Threads Handles Sessionld ‘Wow64 C ExitTime
4 0 System Oxe18447 6b4040 209 - NA FALSE 2022-04-07 19:51:44 NA
*420 4 smss.exe E1844993D040 2 N/A FALSE 2022-04-07 19:51:44 N/A
*124 4 Registry E184479E4040 4 N/A FALSE 2022-04-07 19:51:42 NA
* 2380 4 MemC: i E1844F4B1040 50 N/A FALSE 2022-04-07 19:51:49 NA
616 572 csrss.exe E1844D866140 12 0 FALSE 2022-04-07 219:51:46 NA
824 572 wininit.exe E1844E88C080 1 0 FALSE 2022-04-07 19:51:48 N/A
* 664 824 fontdrvhost.ex E1844E981080 5 0 FALSE 2022-04-07 19:51:48 N/A
*924 824 Isass.exe E1844E90E0CO 10 0 FALSE 2022-04-07 19:51:48 NA
*900 824 services.exe E1844E622280 6 0 FALSE 2022-04-07 19:51:48 NA
** 1540 900 svchost.exe E1844F20A2C0 6 0 FALSE 2022-04-07 19:51:49 N/A
% 3844 1540 taskhostw.exe 0xe1844{b20080 7 1 FALSE 2022-04-07 19:51:50 N/A
** 3592 900 svchost.exe E1844FAE3080 8 0 FALSE 2022-04-07 19:51:49 NA
** 1548 900 Intel CpHDCPSve E1844F208080 3 0 FALSE 2022-04-07 19:51:49 NA
** 1560 900 svchost.exe E1844F226300 16 0 FALSE 2022-04-07 19:51:49 N/A
**3612 900 svchost.exe E1844FAE2080 5 0 FALSE 2022-04-07 19:51:49 NA
**1056 900 svchost.exe E1844F39C340 7 0 FALSE 2022-04-07 19:51:49 N/A
** 4648 900 svchost.exe E1844FEBC340 13 0 FALSE 2022-04-07 19:51:50 NA
**2604 900 svchost.exe E1844F69D340 1 0 FALSE 2022-04-07 19:51:49 N/A
** 2092 900 ‘WUDFHost.exe E1844F882080 9 0 FALSE 2022-04-07 19:51:49 N/A
** 4656 900 svchost.exe E1844FEBD080 7 0 FALSE 2022-04-07 19:51:50 N/A
** 576 900 svchost.exe E1844F0412C0 3 0 FALSE 2022-04-07 19:51:48 N/A
** 3140 900 svchost.exe E1844F8EE2C0O 15 0 FALSE 2022-04-07 19:51:49 N/A
** 9796 900 svchost.exe E18451F8D080 2 0 FALSE 2022-04-07 19:52:09 NA
** 4168 900 svchost.exe E1844FD3D280 11 0 FALSE 2022-04-07 19:51:50 N/A
** 1616 900 svchost.exe E1844F250340 8 0 FALSE 2022-04-07 19:51:49 N/A
** 4180 900 AppleOSSMgr.ex E1844FD3F280 3 0 FALSE 2022-04-07 19:51:50 N/A
** 2136 900 svchost.exe E1844F421080 7 0 FALSE 2022-04-07 19:51:49 NA
** 2652 900 svchost.exe E1844F6DC2C0O 4 0 FALSE 2022-04-07 19:51:49 N/A

Figure 2: Data generated using the PsCommands (PsTree)

PID PPID ImageFileName Offset(V) Threads Handles Sessionld ‘Wow64 CreateTime ExitTime File output
4 0 System 0xe184476b4040 209 N/A FALSE 4/712022 19:51:44 NA Disabled
124 4 Registry E184479E4040 4 N/A FALSE 4/7/2022 19:51:42 N/A Disabled
420 4 smss.exe E1844993D040 2 NA FALSE 4/7/2022 19:51:44 N/A Disabled
616 572 CSTsS.exe E1844D866140 12 0 FALSE 4/7/2022 19:51:46 N/A Disabled
900 824 services.exe E1844E622280 6 0 FALSE 4/7/2022 19:51:48 N/A Disabled
824 572 wininit.exe E1844E88C080 1 0 FALSE 4/7/2022 19:51:48 N/A Disabled
832 816 CSTSS.exe E1844E890140 14 1 FALSE 4/7/2022 19:51:48 N/A Disabled
924 824 Isass.exe E1844E90E0CO 10 0 FALSE 4/7/2022 19:51:48 N/A Disabled
464 900 svchost.exe E1844E9802C0 12 0 FALSE 4/7/2022 19:51:48 NA Disabled
664 824 fontdrvhost.ex E1844E981080 5 0 FALSE 4/7/2022 19:51:48 N/A Disabled
708 900 svchost.exe E1844F019340 1 0 FALSE 4/7/2022 19:51:48 N/A Disabled
576 900 svchost.exe E1844F0412C0 3 0 FALSE 4/7/2022 19:51:48 N/A Disabled
652 816 winlogon.exe E1844F059080 6 1 FALSE 4/7/2022 19:51:48 N/A Disabled
1060 652 fontdrvhost.ex E1844F0C21C0 5 1 FALSE 4/7/2022 19:51:48 N/A Disabled
1192 900 svchost.exe E1844F1340C0 3 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1160 652 LogonULexe E1844F139240 0 1 FALSE 4/7/2022 19:51:49 19:52:01 Disabled
1168 652 dwm.exe 0xe1844f13b100 14 1 FALSE 4/7/2022 19:51:49 NA Disabled
1180 900 svchost.exe E1844F140340 2 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1188 900 svchost.exe E1844F142340 7 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1340 900 svchost.exe E1844F19E080 1 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1332 900 svchost.exe E1844F19F300 4 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1548 900 IntelCpHDCPSve E1844F208080 3 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1540 900 svchost.exe E1844F20A2C0 6 0 FALSE 4/72022 19:51:49 NA Disabled
1560 900 svchost.exe E1844F226300 16 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1616 900 svchost.exe E1844F250340 8 0 FALSE 4/7/2022 19:51:49 NA Disabled
1664 900 svchost.exe E1844F255080 6 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1696 900 svchost.exe E1844F2572C0 3 0 FALSE 4/7/2022 19:51:49 N/A Disabled
1704 900 svchost.exe E1844F259340 2 0 FALSE 4/7/2022 19:51:49 N/A Disabled

Figure 3: Data generated using the PsCommands (PsScan)

Project Implementation Plan

The objective of research is to determine the best method to perform Memory Forensic
using volatility that could be used to detect and prevent malicious attacks. To implement the final
solutions the team performed sprints that allowed us to form an objective over a course to time.
The first sprint, or increment of our project was to generate a memory capture of a clean RAM
using the FTK Imager. Clean RAM, referring to the limitations on active applications running on
the system during the capture. This required us to install the software and become familiar with
its functions that would allow us to capture memory.

Our second sprint was to generate our Memory Forensic tool, Volatility, and our first
method that utilized the Ps Commands (PsList, PsTree, PsScan) that would be used to process
the system’s RAM data. Then the team would determine another method that could be used. By
the third sprint our second method, we refer to as Commandline, would be implemented on a
system that had active applications and processes. Using this method, we would determine the

steps that could be used to identify and process data with the system’s memory.

In our fourth, rather last sprint, we would compare the results of using the Ps Commands
and Commandline on fairly clean and uncompromised systems. We would then create a system
that would be by definition “compromised” by common malware mimicking its behavior and
attack methods. As we did with the uncompromised system, we would capture its memory.
Using both of the methods to identify suspicious activities that would in turn provide us

information on efficiency and effectiveness of PsCommands and Commandline.

Project Implementation Process

=> Memory Forensic Software:

=> Text File Implementation:
For research we wanted to create a text file that would be used as a guide to
navigate and identify the memory processes and relationship with a memory dump. We

would also use this file to determine when our system has been compromised.

HowardUni.txt - Notepad

File Edit Format View Help

hhe diagram in Figure 6-1 shows several of the basic resources that belong to a process.
At the center is the _EPROCESS, which is the name of the structure that Windows uses

to represent a process. Although the structure names certainly differ among Windows,

Linux, and Mac, all operating systems share the same concepts that are described in this
high-level diagram. For example, they all have one or more threads that execute code,

and they all have a table of handles (or file descriptors) to kernel objects such as files,
network sockets, and mutexes

Each process has its own private virtual memory space that’s isolated from other processes.
modules (DLLs or shared libraries); and its stacks, heaps, and allocated memory regions
containing everything from user input to application-specific data structures (such as

SQL tables, Internet history logs, and configuration files). Windows organizes the memory
regions using virtual address descriptors (VADs), which are discussed in Chapter 7.

Figure : HowardUni.txt File

=> Memory Capture of Uncompromised System:

€ Method 1: Generating PsCommands:

Using the FTK Imager to capture the memory on a clean RAM. We had
little to no running programs on our system. Using our Memory Forensic tool,
Volatility3, we ran the PsCommands (PsList, PsTree, and PsScan) and analyzed
the data. We identified the Notepad.exe process and it was able to provide
information on what opened the HowardUni.txt file as we were capturing
memory. It was able to confirm what we expected to see in the memory dump. We
were also able to see how many processes share the same PID. The processes that

shared the same PID allowed us to make sense of the relationship between PID

and PPID.

What Opened Notepad?
SecurityHealth
PID: 10444
Bootcamp.exe
There are 5 other processes with the same PPID

OneDrive.exe
msedge.exe

FTK Imagerexe

Figure : PID and PPID on a RAM with no running programs

C:\Users\patie\Desktop\volatility3\volatility3-develop>python vol.py -f C:\Users\patie\OneDrive\Desktop\memdump.mem windows.pslist --pid 5748
[Volatility 3 Framework 2.0.3
100.00 PDB scanning finished

ImageFileName Offset(V) Threads Handles SessionId Wow64 CreateTime ExitTime File output

5600 notepad.exe 0xb20151a020c0 4 - 1 False 2022-03-31 20:33:55.000000 N/A Disabled

Figure 1: Data generated using the PsCommands (PsList)

dwm.exe Oxa50fb7ce6240 28 2022-04-05 02:
userinit.exe oxa50fb8da6340 © False 2022-04-05 02:37:22.000000 2022-04-05 02:37:45.000000
explorer.exe oxa5efbs8f7fece 80 False 2022-04-05 02:37:22.000000 N/A
5732 SecurityHealth ©xa5efba8c1240 1 False 2022-04-05 02:37:34.000000 N/A
5732 notepad.exe oxa5efbobgbese False 2022-04-05 02:37:44.000000 N/A
FTK Imager.exe ©xa50fb7ddeos8e False 2022-04-05 :37:53.000000 N/A
msedge.exe oxa50fbal50080 False 2022-04-05 :37:38.000000 N/A
msedge.exe ©xa50fbal52080 False 2022-04-05 :37:38.000000 N/A
msedge.exe @xa50fbacc2080 False 2022-04-05 :37:38.000000 N/A
msedge.exe oxa50fb8ci1dese False 2022-04-05 :37:39.000000 N/A
msedge.exe ©xa50fbac4abese False 2022-04-05 :37:38.000000 N/A
msedge.exe ©xa50fbad37080 False 2022-04-05 .000000 N/A
identity_helpe 0xa50fb8cle080 False 2022-04-05 .000000 N/A
msedge.exe oxa50fbavafese - False 2022-04-05 :37:39.000000 N/A
OneDrive.exe ©xa50fbad770co - False 2022-04-05 :37:36.000000 N/A
Bootcamp.exe 0xa50fb99cdese - 1 False 2022-04-05 .000000 N/A
LogonUI.exe 0xa5efb745des8e o 1 False 2022-04-05 02:37:20.000000 2022-04-05 02:37:38.000000
GoogleCrashHan ©xa50fba589080 5 0 True 2022-04-05 02:37:25.000000
GoogleCrashHan ©xa50fba5910c@ 5] False 2022-04-05 02:37:25.000000

PRRERRRPRRERRRERRR

C:\Users\patie\Desktop\volatility3\volatility3-develop>python vol.py -f C:\Users\patie\OneDrive\Desktop\memdump.mem windows.pstree.PsTree

Figure 2: Data generated using the PsCommands (PsTree)

C:\Users\patie\Desktop\volatility3\volatility3-develop>python vol.py -f C:\Users\patie\OneDrive\Desktop\memdump.mem windows.psscan --pid 5748
Volatility 3 Framework 2.0.3
100.00 PDB scanning finished
PPID ImageFileName Offset(V) Threads Handles SessionId Wow64 CreateTime ExitTime File output

5600 notepad.exe 0xb20151a020c0 4 - 1 False 2022-03-31 20:33:55.000000 N/A Disabled

Figure 3: Data generated using the PsCommands (PsScan)

€ Method 2: Generating Commandline:

Using the FTK Imager to capture the memory of a more active RAM that
had active running programs on our system. Using our Memory Forensic tool,
Volatility3, we ran the Commandline and analyzed the data that was generated. As
seen within Method 1 using the PsCommands, we were able to see similar
information regarding the Notepad.exe process. Commandline was also able to
provide information on what opened the HowardUni.txt file as we were capturing
memory with little investigation. It did not require us to browse through multiple
lines of data. As well, confirmed what we expected to see in the memory dump.
We were also able to see how many processes share the same PID. In contrast to
the cleaner RAM within Method 1, there were more processes in association with

the Notepad.exe process.

SecurityHealth

What Opened Notepad?
PID: - Bootcamp.exe
/ OneDrive.exe

There are 7 other processes with the same PPID
\ msedge.exe

\
\

\
\

A

WhatsApp.exe

chrome.exe

FTK Imager.exe

Figure : PID and PPID on a RAM with running programs

svchost.exe C:\Windows\system32\svchost.exe -k netsvcs -p -s wlidsvc
chrome.exe "C:\Program Files\Google\Chrome\Application\chrome.exe" --type=renderer --display-capture-permissions-policy-allowed --lang=en-US --device-scale
-factor=2 --num-raster-threads=4 --enable-main-frame-before-activation --renderer-client-id=54 --launch-time-ticks=3001833512 --mojo-platform-channel-handle=3636 --fiel

d-trial-handle=1692,1,16172234002834480164,8266211355273652776,131072 /prefetch
chrome.exe "C:\Program Files\Google\Chrome\Application\chrome.exe" --type=renderer --extension-process --display-capture-permissions-policy-allowed --lang=
--device-scale-factor=2 --num-raster-threads=4 --enable-main-frame-before-activation --renderer-client-id=55 --launch-time-ticks=3012055775 --mojo-platform-channe

1-handle=4920 --field-trial-handle=1692,i,16172234002834480164,8266211355273652776,131072 /prefetch:1
FileCoAuth.exe "C:\Users\patie\AppData\lLocal\Microsoft\OneDrive\22.045.0227.0004\FileCoAuth.exe"” -Embedding
smartscreen.ex C:\Windows\System32\smartscreen.exe -Embedding
notepad.exe "C:\Windows\system32\NOTEPAD.EXE" C:\Users\patie\OneDrive\Desktop\Memory\HowardUni.txt.txt
audiodg.exe C:\Windows\system32\AUDIODG.EXE @x504
FTK Imager.exe "C:\Program Files\AccessData\FTK Imager\FTK Imager.exe"

Figure : Data generated using CommandLine

=> Memory Capture of Compromised System:

One of the importance of Memory Forensics revolves around the idea that many
malicious attacks start within programs that are then loaded within memory and executed.
We were able to determine two methods that could be used with the Volatility 3 tool to
generate information and analysis. Using these techniques we need to test them them on a
“compromised” device that we know should provide information that could be seen as
abnormal in comparison to our uncompromised device. Researching the methods of
malicious attacks we were able to create a simple form of a “virus” that we would use to

infect the contents of our HowadUni.txt file.

Creating this virus required us to create a python program that would be executed
to compromise our system. The “virus”, once the program is executed, will compromise
the contents of any .txt file opened in the background or opened after the virus is
executed. Will this occured, we captured the memory using FTK Imager. With the
memory captured we analyzed the memory dump using the PsCommands and
Commandline methods.

Using PsCommands and CommandLine, we were able to generate a model of
what an uncompromised system should look like. Using this, we wanted to use these
same methods to determine if there would be any abnormalities in the memory’s

processes after running our “virus”.

Figure : HowardUni.txt File unaffected by the virus

Figure : Running python script that will execute the virus

BEGIN #u#s#s", 1i

1-:;1!1

Dear Howard studen

sed for testing purpo

Figure : HowardUni.txt File affected by the virus

svchost.exe C:\Windows\System32\svchost.exe -k NetworkService -p -s DoSvc

SearchApp.exe \Windows\SystemApps\Microsoft.Windows.Search_cw5nlh2txyewy\SearchApp.exe" -ServerName:CortanaUI.AppX8z9r6jm96hwabsbneegwokyxx296wrot.mca
FTK Imager.exe \Program Files\AccessData\FTK Imager\FTK Imager.exe"

cmd.exe "C:\Windows\system32\cmd.exe"

conhost.exe \??\C:\Windows\system32\conhost.exe 0x4

WmiPrvSE.exe Required memory at @xef25afa®20 is not valid (process exited?)

notepad.exe "C:\Windows\system32\NOTEPAD.EXE" C:\Users\patie\Desktop\Virus\Howarduni.txt

SearchProtocol \Windows\system32\SearchProtocolHost.exe" Global\UsGthrFltPipeMssGthrPipe_S-1-5-21-359 446-484028507-2670308062-100121_ Global\UsGthrCtrlFl
[tPipeMssGthrPipe_S-1-5-21-359206446-484028507-2670308062-100121 1 -2147483646 "Software\Microsoft\Windows Search" lozilla/4.0 (compatible; MSIE 6.0; Windows NT; MS Sea
rch 4.0 Robot)" "C:\ProgramData\Microsoft\Search\Data\Temp\usgthrsvc" "DownLevelDaemon" "1"

13920 SearchProtocol \Windows\system32\SearchProtocolHost.exe" Global\UsGthrFltPipeMssGthrPipe22_ Global\UsGthrCtrlFltPipeMssGthrPipe22 1 -2147483646 "Software\Mi
crosoft\Windows Search” zilla/4.@ (compatible; MSIE 6.0; Windows NT; MS Search 4.8 Robot)" "C:\ProgramData\Microsoft\Search\Data\Temp\usgthrsvc" "DownLevelDaemon"
14212 SearchFilterHo :\Windows\system32\SearchFilterHost.exe" © 812 816 824 8192 820 792

14284 notepad.exe Required memory at ©x500ef35020 is not valid (process exited?)

Figure : Commandline Data generated from the Compromised system (Virus)

58 11788 464 CompPkgSrv.exe E184501BD080 1 FALSE 20:35:27 N/A Disabled
59 8360 5772 Code.exe E1844FC82080 31 1 FALSE 21:02:12 N/A Disabled
60 2560 8360 Code.exe E1845187B080 7 1 FALSE 21:02:12 NA Disabled
© 12140 8360 Code.exe E184528AE080 14 1 FALSE 21:02:12 N/A Disabled
62 2344 8360 Code.exe 14 1 FALSE 21:02:12 N/A Disabled
63 5144 8360 Code.exe 20 1 FALSE 21:02:12 NA Disabled
64 4008 8360 Code.exe 14 1 FALSE 21:02:13 N/A Disabled
65 5632 8360 Code.exe 23 1 FALSE 21:02:14 N/A Disabled
66 8664 Code.exe 12 1 FALSE 21:02:14 NA Disabled
67 5188 Code exe 14 1 FALSE 21:02:14 N/A Disabled
43 8844 900 svchost.exe 7 0 FALSE 19:53:51 N/A Disabled
44 10628 900 ‘WUDFHost. exe 6 0 FALSE 19:59:05 N/A Disabled
45 11260 1272 python.exe 0 1 FALSE 19:59:14 19:59:18 Disabled
46 9864 464 dllhost exe 5 9 1 FALSE 19:59:39 N/A Disabled +
Figure : PsList generated from the Compromised system (Virus)

11260 1272 python exe E184507CF080 [1 FALSE 19:59:14 19:59:18

11732 9788 Code.exe E18456B40080 [1 FALSE 20:10:15

9576 588 Code.exe E184573AD080 [1 FALSE 20:10:20

10336 580 Code.exe E18456ADE080 [1 FALSE 20:11:13

508 8916 Code exe E18456A1A080 o 1 FALSE 20:11:42

Figure : PsTree generated from the Compromised system (Virus)

Conclusions

We were able to generate two methods that could be used to analyze data provided by the
memory dump of our systems. Memory dump is a snapshot of a system’s memory at a specific
instant of time/process. The first method requires us to generate the Ps Commands. Through this
we can analyze the processes of the entire system that gives us information of what process has
been opened, closed, and even what process opened other processes (PPID and PID relationship).
The other method requires the use of a Commandline that instantly provides information of our
intended process. Utilizing both methods on a compromised and uncompromised system we
were able to determine which method would be more effective and efficient in providing

Memory Forensic. Both methods were able to provide information and data result of what

occurred with the system memory, however after weighing the pros and cons Commandline was
more reactive and quick with providing adequate information that could be used to identify

suspicious activities within the memory.

References

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The art of memory forensics: detecting
malware and threats in windows, linux, and Mac memory. John Wiley & Sons.

Paull. (2020, November 10). Malware analysis: Memory forensics with volatility 3. On The
Hunt. Retrieved April 19, 2022, from
https://newtonpaul.com/malware-analysis-memory-forensics-with-volatility-3/

Pearson, A. (2021, May 10). Volatility 3 CheatSheet. onfvp. Retrieved April 01, 2022, from
https://blog.onfvp.com/post/volatility-cheatsheet/

Volatilityfoundation. (n.d.). Command reference - volatilityfoundation/volatility wiki. GitHub.
Retrieved March 17, 2022, from

https://github.com/volatilityfoundation/volatility/wiki/Command-Reference

