Chapter 8 Photovoltaic (PV) Materials and Electrical Characteristics

Photoelectric Effect:

1887, Heinrich Hertz

1905 Albert Einstein

Photovoltaic (PV)

Solar Energy: "The surface of the earth receives 6000 times as much solar energy as our total energy demand"

Photovoltaic (PV):

₩ PV History

Solar Cell Semiconductor Physics

The Portion of the Periodic Table of Greatest Importance for Photovoltaics Includes the Elements Silicon, Boron, Phosphorus, Gallium, Arsenic, Cadmium, and Tellurium

Ι	II	III	IV	V	VI
		5 B	6 C	7 N	8 0
		13 Al	14 Si	15 P	16 S
29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se
47 Ag	48 Cd	49 ln	50 Sn	51 Sb	52 Te

Band Gap Energy

Formation

Energy of a photon

$$E = hv = \frac{hc}{\lambda}$$

$$E = \text{energy of a photon (J)}$$

$$c = \text{speed of light (3 × 10^8 m/s)}$$

$$v = \text{frequency (hertz)},$$

$$h = \text{Planck's constant (6.626 × 10^{-34} J-s)}$$

$$\lambda = \text{wavelength (m)}$$

Sample Calculation: Silicon has a band gap of 1.12 eV and 1 eV = 1.6 x 10⁻¹⁹ [J] (a) What maximum wavelength can a photon have to create hole-electron pairs in silicon? (b) What minimum frequency is that?

Solar Spectrum and Band-Gap

AM Ratio and PV plate

Band Gap Energy for Solar Cell Material

Band-Gap and Cut-Off Wavelength for Electron Excitation

PV Material	Silicon (Si)	Gallium Arsenide (GaAs)	Cadmium Telluride (CdTe)	Indium Phosphide (InP)
Band Gap [eV]	1.12	1.42	1.5	1.35
Cut-off wavelength [μm]	1.11	0.87	0.83	0.92

p-n Junction Diode

Shockley diode equation: $I_d = I_0(e^{qV_d/kT} - 1)$

- I₀ reverse saturation current (A) reverse saturation current is the result of thermally generated carriers with the holes being swept into the p-side and the electrons into the n-side.
- I_d the diode current in the direction of the arrow (A)
- V_d the voltage across the diode terminals from the p-side to the n-side (V).
- q the electron charge $(1.602 \times 10^{-19} \text{C})$
- k Boltzmann's constant $(1.381 \times 10^{-23} \text{ J/K})$
- T the junction temperature (K).

PV Cell Equivalent Circuit

I_{SC} short-circuit current

I-V Curve

I-V Curve Example

Example: Consider a 100 cm² PV cell with reverse saturation current density 10⁻¹² A/cm². In the full sun ("peak sun"), it produces a short-circuit current density of 40 mA/cm² at 25 °C. Find the open-circuit voltage at full sun and again for 50% sunlight. Plot I-V curve.

MPP and FF (Fill Factor)

Fill Factor (FF): performance measure: ratio of the power at MPP to the product of V₀c and I₅c.

Operating Point

I-V Curve of Resistive Load

Maximum Power Point Tracker

A PV module is delivering power to a resistive load of 4 ohms. Under an 1-sun condition, a PV module has its maximum power point at V_m =20 volts and I_m = 5 A. In the late afternoon (under ½ sun), the maximum power point moves to I_m = 2.5 A and V_m =20 volts. (a) What is the power delivered to the load under 1-sun, (b) What is the power deliver to the load under ½ sun, (c) In ½ sun, what should be the output voltage to deliver maximum power to the load?

1/2- sun condition

MPPT condition for maximum power to the load.

