Solar Radiation

Source: esri.com

Clear Sky Beam Radiation

 \aleph Extraterrestrial Solar Insolation (I_0)

$$I_0 = SC \cdot \left[1 + 0.034 \cos \left(\frac{360n}{365} \right) \right]$$
 (W/m²)

 1.377 kW/m^2

Portion of the beam reaching the earth horizontal surface (I_B)

$$I_B = Ae^{-km}$$

$$A = 1160 + 75\sin\left[\frac{360}{365}(n - 275)\right]$$
 (W/m²)

$$k = 0.174 + 0.035 \sin \left[\frac{360}{365} (n - 100) \right]$$

$$m = \frac{1}{\sin \beta}$$

Clear Sky Beam Radiation – Example

Question: Find the direct beam solar radiation on the horizontal
surface at solar noon on a clear day on Howard University campus (latitude ???? degrees) on May 21.

January	n = 1	July	n = 182
February	n = 32	August	n = 213
March	n = 60	September	n = 244
April	n = 91	October	n = 274
May	n = 121	November	n = 305
June	n = 152	December	n = 335

Beam Radiation on Collector

Beam Radiation on Collector - Example

Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the beam insolation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees.

$$\beta = \sin^{-1} \left\{ \cos L \cos \delta \cos H + \sin L \sin \delta \right\}$$

$$\phi = \sin^{-1} \left\{ \frac{\cos \delta \sin H}{\cos \beta} \right\}$$

January	n = 1	July	n = 182
February	n = 32	August	n = 213
March	n = 60	September	n = 244
April	n = 91	October	n = 274
May	n = 121	November	n = 305
June	n = 152	December	n = 335

Diffuse Radiation on Collector

lpha Diffuse insolation on a Horizontal surface I_{DH}

$$C = 0.095 + 0.04 \sin \left[\frac{360}{365} (n - 100) \right]$$

lpha Diffuse Radiation on collector I_{DC}

Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the diffuse radiation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees. Find the Diffuse Radiation (I_{DC})

$$H=0 \rightarrow 9_{s}=0$$
 Sun's azimum
 $9_{c}=20^{\circ}$ Collector's azimum
 $L=33.7^{\circ}$ May $1 \Rightarrow n=141$
 $\sum = 52^{\circ}$ $P_{N}=76.4^{\circ}$

Reflected Radiation on Collector

Reflection from ground with reflectance (snow, water, etc.)

ground reflectance ho

$$I_{RC} = \rho I_B(\sin \beta + C) \left(\frac{1 - \cos \Sigma}{2}\right)$$

$$H=0 \rightarrow \phi_s=0$$
 Sun's azimum
 $\theta_c=20^\circ$ Collector's azimum
 $L=33.7^\circ$ May $l \Rightarrow n=141$
 $z=52^\circ$ $r=76.4^\circ$

Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the reflected radiation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees, if the reflectance of the surfaces in front of the panel is 0.2.

Total Radiation on Collector

$$\begin{split} I_C &= I_{BC} + I_{DC} + I_{RC} \\ I_C &= Ae^{-km} \left[\cos \beta \cos(\phi_S - \phi_C) \sin \Sigma + \sin \beta \cos \Sigma + C \left(\frac{1 + \cos \Sigma}{2} \right) \right. \\ &\left. + \rho \left(\sin \beta + C \right) \left(\frac{1 - \cos \Sigma}{2} \right) \right] \end{split}$$

$$I_B = Ae^{-km}$$

$$\delta = 23.45^{\circ} \sin \left[\frac{360}{365} (n - 81) \right]$$

$$A = 1160 + 75 \sin \left[\frac{360}{365} (n - 275) \right]$$
 (W/m²)
$$k = 0.174 + 0.035 \sin \left[\frac{360}{365} (n - 100) \right]$$

$$\beta = \sin^{-1} \left\{ \cos L \cos \delta \cos H + \sin L \sin \delta \right\}$$

$$\phi = \sin^{-1} \left\{ \frac{\cos \delta \sin H}{\cos \beta} \right\}$$

$$C = 0.095 + 0.04 \sin \left[\frac{360}{365} (n - 100) \right]$$

Collector Insolation:

- (a) fixed collector (no tracking)
- (b) single-axis tracking (follow the sun's azimuth)
- (c) two-axis tracking (follow sun''s altitude and azimuth)

$$I_{BC} = I_B \cos \theta$$
 $\cos \theta = \cos \beta \cos(\phi_S - \phi_C) \sin \Sigma + \sin \beta \cos \Sigma$

$$I_{DC} = CI_B \left(\frac{1 + \cos \Sigma}{2} \right)$$

$$I_{RC} = \rho (I_{BH} + I_{DH}) \left(\frac{1 - \cos \Sigma}{2} \right)$$

$$I_{BH} = I_B \cos(90^\circ - \beta) = I_B \sin \beta$$

$$I_{DH} = CI_B$$

One-Axis Polar Mount Tracking

fixed tilted angle

follow the sun's azimuth

$$I_{BC} = I_B \cos \delta$$

$$I_{DC} = CI_B \left[\frac{1 + \cos(90^\circ - \beta + \delta)}{2} \right]$$

$$I_{RC} = \rho (I_{BH} + I_{DH}) \left[\frac{1 - \cos(90^\circ - \beta + \delta)}{2} \right]$$

Two-Axis Tracking

- Follow the sun's altitude
- Follow the sun's azimuth

Two-Axis Tracking:

$$I_{BC} = I_B$$

$$I_{DC} = CI_B \left[\frac{1 + \cos(90^\circ - \beta)}{2} \right]$$

$$I_{RC} = \rho(I_{BH} + I_{DH}) \left[\frac{1 - \cos(90^\circ - \beta)}{2} \right]$$

Clear Sky Insolation Equations – Handout

Summary of Clear-Sky Solar Insolation Equations

$$I_{0} = 1370 \left[1 + 0.034 \cos \left(\frac{360n}{365} \right) \right] (W/m^{2})$$

$$m = \frac{1}{\sin \beta}$$

$$C = 0.095 + 0.04 \sin \left[\frac{360}{365} (n - 100) \right]$$

$$I_{B} = Ae^{-km}$$

$$A = 1160 + 75 \sin \left[\frac{360}{365} (n - 275) \right] (W/m^{2})$$

$$I_{DC} = I_{DH} \left(\frac{1 + \cos \Sigma}{2} \right) = I_{B}C \left(\frac{1 + \cos \Sigma}{2} \right)$$

Question 1: Calculate the clear sky insolation on a fixed titled angle of 40° facing south collector located at 40° latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.

Question 2: Calculate the clear sky insolation on a single-axis polar mount collector located at 40°latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.

Question 3: Calculate the clear sky insolation on a two-axis tracking collector located at 40°latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.