Heating Value (energy density) comparison


```
16,000
# Firewood
                30,000
₩ Coal
                50,000
50,000
₩ LPG
                45,000
# Gasoline
50,000
# Hydrogen (H2)
                120,000
# Uranium (Natural)
                           500,000,000 [500 GJ]
# Uranium (Enriched to 3.5%)
                          3,900,000,000 [4 TJ]
```

Heating Value Types: LHV and HHV

- # Gross $\underline{HV} = \text{High } \underline{HV} (\underline{HHV})$
- Net HV = Low HV (LHV)

- Background (in fuel burning)

Heating Value Types: LHV and HHV

₩ HHV:

₩ LHV:

HHV >LHV

Higher Heating Value (HHV) and Lower Heating Value (LHV) for Various Fuels^a

Fuel	Higher Heating Value HHV		Lower Heating Value LHV		
	Btu/lbm	kJ/kg	Btu/lbm	kJ/kg	LHV/HHV
Methane	23,875	55,533	21,495	49,997	0.9003
Propane	21,669	50,402	19,937	46,373	0.9201
Natural gas	22,500	52,335	20,273	47,153	0.9010
Gasoline	19,657	45,722	18,434	42,877	0.9378
No. 4 oil	18,890	43,938	17,804	41,412	0.9425

^aThe gases are based on dry, 60°F, 30-in. Hg conditions. Natural gas is a representative value. Source: Based on Babcock and Wilcox (1992) and Petchers (2002).

lbm: pound-mass

HHV and LHV efficiency

- **# HHV:** Appears to be Lower Efficiency
- **# LHV:** Appears to be higher efficiency
- # Fuel Rate [kg/kWh] is the same

HHV and **LHV** efficiency Relationship

HHV vs LHV - Example 1

 A micro-turbine has a natural gas input of 14,500 kJ in LHV per kWh electricity generation output. Find (a) LHV efficiency and (b) HHV efficiency if LHV/HHV = 0.901.

HHV vs LHV - Example 2

- ## On an HHV basis, 600-MW coal-fired power plant has a heat rate of 10, 200 kJ/kWh. The particular coal has an LHV of 14,000 kJ/kg and HHV of 15,000 kJ/kg.
- **∺** (b) find the <u>LHV</u> efficiency of the plant
- # (c) at what rate the coal has to be supplied [kg/hour] ?

Combustion Gas Turbines

Basic Gas Turbine

- Fuel: Natural Gas
- Compressor and Turbine shares a connecting shaft
- ½ the rotational energy created by the spinning turbine is used to power the compressor

Combustion Gas Turbines

Steam-Injected Gas Turbine (STIG)

- Increased Efficiency by a heat exchanger
- Heat Recovery Steam Generation (HRSG)
 - ☑ Injected Steam
 - Effect of fuel reduction
- HRSG reduces the combustion temperature
 - Reduced NOx emission
- □ Efficiency 45%
- More Expensive

Combined-Cycle Power Plant

Combined-Cycle GasTurbine

- Gas turbine waste heat can be used to power a second-stage steam turbine → Coupling a gas turbine and steam turbine → Combined Cycle Plant
- 49% Efficiency

Combined-Cycle Power Plant

Cogeneration:

Electricity + Thermal Energy (Steam Turbine Electricity Generation + Heating)

