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CHAPTER 2: Electric Power  
 
 
AC circuit response:  magnitude & phase angle 
 
Complex number  Z= x + j y = |Z|<a   where a = atan(x/y) 
  
Euler’ formula:  𝑒௝௫ = 𝑐𝑜𝑠𝑥 + 𝑗 𝑠𝑖𝑛𝑥 
 
Euler’s identity: 𝑒௝గ = 𝑐𝑜𝑠𝜋 + 𝑗 𝑠𝑖𝑛𝜋 =  −1 + 𝑗0 =  −1  or 
   𝑒௝గ + 1 = 0 

 
Trigonometry 
   cos(𝑥 + 𝑦) = cos 𝑥 ∗ cos 𝑦 − sin 𝑥 ∗ sin 𝑦 sin(𝑥 + 𝑦) = sin 𝑥 ∗ cos 𝑦 + cos 𝑥 ∗ sin 𝑦 
  
Derivation for Euler’s formula 𝑒௝(௫ା௬) = cos(𝑥 + 𝑦) + 𝑗 sin(𝑥 + 𝑦)  𝑒௝(௫ା௬) = 𝑒௝௫𝑒௝௬= (cos +𝑗 sin 𝑥)( cos +𝑗 sin 𝑦)= cos 𝑥 ∗ cos 𝑦 − sin 𝑥 ∗ sin 𝑦   + 𝑗 (cos 𝑥 ∗ sin 𝑦 + sin 𝑥 ∗ cos 𝑦) 
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Phasor 
 𝑣(𝑡) = 𝑉 ∗ cos  (𝑤𝑡 + 𝜃) = 𝑅𝑒൛𝑉 ∗ 𝑒௝(௪௧ାఏ)ൟ = 𝑅𝑒{𝑉 ∗ 𝑒௝ఏ ∗ 𝑒௝௪௧} 
 
Let   𝑉ത = 𝑉 ∗ 𝑒௝ఏ,   Phasor representation of v(t) 
 
Then 𝑣(𝑡) = 𝑅𝑒{𝑉ത ∗ 𝑒௝௪௧} 
 
If we suspend the “Re” thing, then we can simply state: 𝑣(𝑡) = 𝑉ത ∗ 𝑒௝௪௧ and  
similarly 𝑖(𝑡) = 𝐼 ̅ ∗ 𝑒௝௪௧ 
 
 
Phasor for voltage and current:   𝑉ത = 𝑉 ∗ 𝑒௝ఏೡ   and    𝐼 ̅ = 𝐼 ∗ 𝑒௝ఏ೔ 
 
Phasor representation of elements (R, L, and C) 
 
Time-domain Phasor domain
R R     𝑅 = ௏ூഥത 
L jwL    From 𝑣(𝑡) = 𝐿 ∗ ௗ௜ௗ௧ → 𝑉ത𝑒௝௪௧ = 𝐿 ∗ (𝑗𝑤) ∗ 𝐼 ̅ ∗ 𝑒௝௪௧ → 𝑉ത = 𝑗𝑤𝐿 ∗ 𝐼 ̅
C 1/(jwC)    From i(𝑡) = 𝐶 ∗ ௗ௩ௗ௧ → 𝐼𝑒̅௝௪௧ = 𝐶 ∗ (𝑗𝑤) ∗ 𝑉ത ∗𝑒௝௪௧ →  𝐼 ̅ = 𝑗𝑤𝐶 ∗ 𝑉ത → 𝑉ത = ଵ௝௪஼ ∗ 𝐼 ̅

 
 
 
 
Effective value (“Root-Mean-Square”) 
 𝑰𝒆𝒇𝒇 = ඨ𝟏𝑻 න 𝒊𝟐𝒅𝒕𝑻

𝟎  
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RMS Calculation of a sinusoidal signal 
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EXAMPLE 
 
A sinusoidal voltage is given by 𝑣(𝑡) = 300 cos (120𝜋𝑡 + 30°) 
(a) What is the period of the voltage? 
(b) What is frequency of the voltage? 
(c) What is the magnitude of the voltage at t = 2.778 ms? 
(d) What is the rms value of the voltage? 
 
 
 
 
 
EXAMPLE 
Find the Phasor of the following sinusoidal signals 
(a) 𝑣(𝑡) = 170 cos (377𝑡 − 40°) 
(b) 𝑣(𝑡) = 10 sin (1000𝑡 + 20°) 
(c) 𝑣(𝑡) = 5 cos(𝑤𝑡 + 36.87°) + 10 cos (𝑤𝑡 − 53.13°) 
 
 
 
 
 
EXAMPLE 
Find the time-domain signal equation of the following phasors 
(a) 𝑉ത = 18.6∠ − 54°    
(b) 𝐼 ̅ = (20 + 𝑗80 − 30∠15°)    
 
 
 
 
 
Impedance 
 
R – L     Z = R + jwL 
 
R – C  Z = R -1/(jwC) 
 
R-L-C  Z = R+ j(wL – 1/(wC)) 
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EXAMPLE 
For the circuit below, find (a) Phasor-domain equivalent circuit and (b) i(t) by Phasor analysis. 
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EXAMPLE 
For the circuit below, find (a) Phasor-domain equivalent circuit and (b) i2(t) by Phasor analysis. 
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COMPLEX POWER 
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1. Definitions 
 
 Instantaneous Power:  wtQwtPPtitvtp 2sin2coscos)()()( −+=⋅= θ  

     Real Power: θθ coscos
2 rmsrms

mm IVIVP ==  

 Reactive Power: θθ sinsin
2 rmsrms

mm IVIVQ ==  

 Complex Power: jQPS +=   (*note: see #3 for deeper discussion) 

 Apparent Power: 22 QPS +=  
 Power Factor Angle: iv θθθ −=  (phase angle difference between voltage and current) 
 
 
2. Load Dependence of the Power 

      Pure R case:  0=θ , 
2

mmIVP = , 0=Q    therefore, “R consumes P only” 

 Pure L case:  90=θ , 0=P , 
2

mmIVQ = , therefore, “L consumes Q only” 

 Pure C case: 90−=θ , 0=P , 
2

mmIVQ −= , therefore, “C delivers Q ” toward the 

source!!!!! 
 

 
 
 
3. Complex Power in Phasor 
 
 From jQPS += ,   
 θθθθθ j

rmsrmsrmsrmsrmsrmsrmsrms eIVjIVIjVIVS =+=+= )sin(cossincos  
 Since iv θθθ −=  
 

irmsvrmsivrmsrmsivrmsrmsrmsrms
j

rmsrms IVIVIVIVeIVS θθθθθθθθ −∠⋅∠=−∠⋅∠=−∠=∠== )(  
 Therefore, 
 rmsrms IVS *⋅=  
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 Let’s expand the complex Power S.  See an example circuit below for the 
discussion. 

 
(1) From rmsrms IZV ⋅= ,                

2222** )( rmsrmsrmsrmsrmsrmsrmsrms IjXIRjXRIIZIIZIVS ⋅+⋅=+===⋅=  
          In this case:  2

rmsIRP ⋅=   and 2
rmsIXQ ⋅=  

                       In other words, P relates only to R, and Q, only to X. 
 

 (2) Alternatively, from 
Z

VI rms
rms = , 22

22

*

2
* )(][

XR
jXRV

jXR
V

Z
V

Z
VVS rmsrmsrmsrms

rms +
+=

−
==⋅=  

  By expanding further, 2

2

2

2

2

2

22

2 )()(
Z

XVj
Z

RV
Z

jXRV
XR

jXRVS rmsrmsrmsrms +=+=
+

+=  

   In this case: 2

2

Z
RVP rms=  and 2

2

Z
XVQ rms=  

     In other words, again, P relates only to R, and Q, only to X. 
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 POWER FACTOR (pf) 
 
1. Definition 
 Power factor (pf) is defined by "cosine of the angle made by voltage and current."  The 
angle, θ, is defined by θv - θi, where θv and θi are phase angles of the voltage and the current, 
respectively.   This definition indirectly says that the reference in phase domain is the voltage.  
(See the diagrams below) 

 
"Leading pf" means that the current leads the voltage and therefore the pf angle θ is negative, as 
shown in (b); "Lagging pf" means that the current lags the voltage and the pf angle θ is positive 
as in (a).  
 
2. Alternative Definition 
 Let's expand the original definition of the pf to the complex power S.   Complex power is 
defined: 

θθθθθ ∠=−∠=−∠⋅∠== ∗ VIVIIVIVS iviv )(  
Therefore the angle of the complex power is exactly same as the angle of V and I.  In other 
words, if we know the complex power and present it on the complex plane, we get the power 
factor angle.  Also, since jQPS += ,  power factor angle can also be found once we know P and 
Q.  (See diagrams below)  Or, we can draw the general place of a complex power, once we know 
power factor is leading or lagging.  "leading" or "lagging" power factor determines the polarity 
of reactive power Q. 
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3. Another Alternative Definition 
 Let's play a little bit more.  This time we will involve load impedance Z.  Since load 
voltage V and load current I determines the load impedance Z, i.e., Z=V/I, we can express the 
power factor with Z. 
 

θθθ
θ
θ ∠=−∠=

∠
∠==

I
V

I
V

I
V

I
VZ iv

i

v )(  

 
Therefore, if we locate the load impedance Z, the angle made by the impedance is the power 
factor angle. Since the impedance is composed of resistance R and reactance X,  jXRZ += , we 
can relate these elements with power factor as shown below. 
 

 
  
4. Final Words 
 If you compare the phase diagram of S and Z, you may notice that they are places along 
the same line, either they are lagging or leading.   In many problems of power factor calculation, 
you may want to apply any or all of the definitions presented here.  In any power factor related 
problems, I recommend you draw phase diagram of S, Z, or V & I, before you jump to write 
your answer.  Always careful with the words "leading" and "lagging."   
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EXAMPLE 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
EXAMPLE PROBLEMS 
 
1. As shown below, a voltage source of 250∠0° (rms) is supplying a load of 39+j26 via a line 
which has an impedance of 1+j4.   
 (a) Find the phasor current and phasor voltage at the load,  LI  and LV  , respectively. 
 (b) Calculated power delivered to the load 
 (c) Calculate (real) power loss in the line 



14 
 

 (d) Calculated power supplied by the source 

 
  
2.  Three loads are connected in parallel across a 2400 V (rms) line, as shown below.  Load 1 

absorbs 18kW and 24 kVar.  Load 2 absorbs 60kVA at 0.6 pf (leading). Load 3 absorbs 18kW 
at unity power factor. 

 (a) Find the impedance that is equivalent to the three parallel loads. 
 (b) Find the power factor of the equivalent load. 
 

   
 
 
 
3. A factory has an electrical load of 1800kW at a lagging power factor of 0.6.  An additional 

variable power factor load is to be added to the factory.  The new load will add 600kW to the 
real power load of the factory.  The power factor of the added load is to be adjusted so that the 
overall power factor of the factory (with the load and the new load) is 0.96 lagging.  Assume 
that the rms voltage at the input to the factory is 4800V. 

 (a) What is the rms magnitude of the current into the factory BEFORE the new load is added 
to the factory? 

 (a) Find the reactive power of the added load. 
 (b) What is the power factor of the new load? 
 (c) What is the rms magnitude of the current into the factory AFTER the new load is added to 

the factory? 
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Example – 
Example – In-phase condition  
The circuit shown below is operating in the sinusoidal steady state.  The inductor is adjusted 
until the current ig is in-phase with the sinusoidal voltage vg.  
 (a) Specify the inductance (in Henry) if vg=100 cos 500t [V].  
 (b) Find ig when L has the value found  in part (a). 

  
  
3-phase system -- SUMMARY 
 
1. Balanced 3-φ system is characterized by: 

• 3 voltages are with same magnitude and 120° phase shift 
• 3 load impedances are same  
• Therefore, the currents are balanced with same magnitude and 120° apart 

2. There are two types of voltages and two types of currents: 
• Phase Voltage (Vφ)= “voltage across a phase impedance” 
• Line Voltage (Vl)= “voltage between a (phase) line and another (phase) line” 
• Phase Current (Iφ)= “current through a phase impedance” 
• Line Current (Il) = “current through a (phase) line” 

3. Above definitions have different meaning at different load formation, Y or Δ 
 Y-load case: As shown below, the three phase impedances (ZA, ZB, ZC) form the letter 

“Y”.  In the figure, the line connecting 3-phase source to the Y-load is represented by a 
line impedance, Zl.   
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 Vφ=VAN, VBN, and VCN  (1) 
                  i.e., phase voltage  is same as the voltage between a (phase) line   

  and the neutral (marked as “N”)  (2) 
 Vl= VAB, VBC, and VCA (3) 
 Iφ =IAN, INN, and iCN  
 Il = IaA, IbB, and icC   (also,  IAN=IaA,etc ) 
 Conclusion of Y-load:   
   (i) Iφ=Il     (ii) Vφ  ≠ Vl   (instead, 303 ∠= φVVl ) 
 

Δ Load Case:  As shown below, the 3 phase loads (ZAB, ZBC, and ZCA) form a Delta 
shape.  As in Y-load, the line connecting 3-phase source to the Y-load is represented by a 
line impedance, Zl.   Note that there is no neutral point. 
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 Vφ=VAB, VBC, and VCA  (4) 
 Vl= VAB, VBC, and VCA (5) 
 Iφ =IAB, IBC, and iCA  
 Il = IaA, IbB, and icC  
 
 Conclusion of Δ-load:   
   (i) Iφ ≠ Il  (instead 303 −∠= φIIl )   (ii) Vφ   = Vl 
4. Single-Phase Equivalent Circuit 

• In a balanced 3-phase system, voltage and current magnitudes are same. 
• In a balanced 3-phase system, voltage and current are 120° apart from each other 
• Therefore, once a phase value is known, the other two are also known 
• NOTE: Single-phase equivalent circuit is formed so that a phase impedance is 

connected between a phase (line) and the neutral. 
 
Y-load case:   From the Y-load figure, let’s delete two phases (B, and C), then the 
remaining circuit looks like below: 

 
 Note: ANVV =φ , and 
  aAII =φ  
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Δ-Load Case:   There is a slight problem here, since there is no neutral point.  So we 
have to convert the load to Y-load equivalent.  By the usual Δ-Y Transformation, we 

could get the Y impedance, in terms of Delta-load, as 
3

Λ= ZZY .  Then the single-phase 

circuit looks like this: 

 
 NOTE: The voltage across the impedance in this single-phase circuit is not the actual 

phase voltage across the impedance.  VAB is the actual voltage across a impedance.  So 
we have to convert the voltage, after your calculation of VAN, to VAB for a delta-load 
phase voltage.   

303 ∠== ANAB VVVφ and,  

30
3

∠== aA
AB

IIIφ  

 
 
 
 
3-phase example problems    
 
EX#1.   
 
A balanced three-phase Y-connected generator has a voltage of 120 V/φ.  A balanced 3-phase Δ-
load is fed from the source through a distribution line having an impedance of 0.5 + j 1.4 Ω/φ.  
The load  impedance is 118.5 + j 85.8 Ω/φ.   Use the a-phase voltage of the generator as the 
reference. 
 
(a) construct 3-phase circuit 
(b) construct a single-phase equivalent circuit 
(c) calculate the line currents IaA, IbB, IcC. 
(d) calculate the phase voltages at the load.  
(e) calculate the total complex power delivered to the load 
(f) calculate what percentage of the real power at the sending end of the line is delivered to the 
load? 
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EX#2.  
 
A balanced 3-phase Y-load requires 480kW at a lagging power factor of 0.8.  The load is fed 
from a line having an impedance of 0.005+j0.025 Ω/φ.  The line voltage at the terminals of the 
load is 600V. 
 
(a) construct 3-phase circuit 
(b) construct a single-phase equivalent circuit 
(c) magnitude of the line current 
(d) magnitude of the line voltage at the sending end of the line 
(e) power factor at the sending end of the line 
 


