# **CHAPTER 2: Electric Power**

AC circuit response: magnitude & phase angle

**Complex number** Z = x + j y = |Z| < a where a = atan(x/y)

**Euler' formula:**  $e^{jx} = cosx + j sinx$ 

Euler's identity:  $e^{j\pi} = cos\pi + j sin\pi = -1 + j0 = -1$  or  $e^{j\pi} + 1 = 0$ 



cos(x + y) = cos x \* cos y - sin x \* sin ysin(x + y) = sin x \* cos y + cos x \* sin y

# **Derivation for Euler's formula**

$$e^{j(x+y)} = \cos(x+y) + j\sin(x+y)$$
  

$$e^{j(x+y)} = e^{jx}e^{jy}$$
  

$$= (\cos + j\sin x)(\cos + j\sin y)$$
  

$$= \cos x * \cos y - \sin x * \sin y + j(\cos x * \sin y + \sin x * \cos y)$$

Phasor

$$v(t) = V * \cos (wt + \theta) = Re\{V * e^{j(wt+\theta)}\} = Re\{V * e^{j\theta} * e^{jwt}\}$$

Let  $\overline{V} = V * e^{j\theta}$ ,  $\leftarrow$  Phasor representation of v(t)

Then  $v(t) = Re\{\overline{V} * e^{jwt}\}$ 

If we suspend the "Re" thing, then we can simply state:  $v(t) = \overline{V} * e^{jwt}$  and similarly  $i(t) = \overline{I} * e^{jwt}$ 

Phasor for voltage and current:  $\overline{V} = V * e^{j\theta_v}$  and  $\overline{I} = I * e^{j\theta_i}$ 

# Phasor representation of elements (R, L, and C)

| Time-domain | Phasor domain                                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------|
| R           | R $R = \frac{\overline{V}}{\overline{L}}$                                                           |
| L           | jwL From $v(t) = L * \frac{di}{dt} \to \overline{V}e^{jwt} = L * (jw) * \overline{I} * e^{jwt} \to$ |
|             | $\bar{V} = jwL * \bar{I}$                                                                           |
| С           | 1/(jwC) From i(t) = $C * \frac{dv}{dt} \rightarrow \overline{I}e^{jwt} = C * (jw) * \overline{V} *$ |
|             | $e^{jwt} \rightarrow \bar{I} = jwC * \bar{V} \rightarrow \bar{V} = \frac{1}{jwC} * \bar{I}$         |

**Effective value ("Root-Mean-Square")** 

$$I_{eff} = \sqrt{\frac{1}{T} \int_0^T i^2 dt}$$

# **RMS** Calculation of a sinusoidal signal



A sinusoidal voltage is given by  $v(t) = 300 \cos(120\pi t + 30^\circ)$ 

- (a) What is the period of the voltage?
- (b) What is frequency of the voltage?
- (c) What is the magnitude of the voltage at t = 2.778 ms?
- (d) What is the rms value of the voltage?

#### EXAMPLE

Find the <u>Phasor</u> of the following sinusoidal signals (a)  $v(t) = 170 \cos (377t - 40^{\circ})$ (b)  $v(t) = 10 \sin (1000t + 20^{\circ})$ (c)  $v(t) = 5 \cos(wt + 36.87^{\circ}) + 10 \cos (wt - 53.13^{\circ})$ 

EXAMPLE Find the time-domain signal equation of the following phasors (a)  $\overline{V} = 18.6 \angle -54^{\circ}$ (b)  $\overline{I} = (20 + j80 - 30 \angle 15^{\circ})$ 

#### **Impedance**

- $R-L \rightarrow Z = R + jwL$
- $R C \rightarrow Z = R 1/(jwC)$

R-L-C → Z = R+ j(wL - 1/(wC))

For the circuit below, find (a) Phasor-domain equivalent circuit and (b) i(t) by Phasor analysis.



For the circuit below, find (a) Phasor-domain equivalent circuit and (b) i2(t) by Phasor analysis.



| time $\frac{p}{p_{r-2}}$ phase Instantaneous Power $p(t)$ $\begin{cases} \theta_{T-2} \\ \theta_{T-2} $                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $R \rightarrow R$ $p(t) = \eta r(t) \cdot i(t)$ $(V t) = V_{t} \cdot \cos(\omega t + o)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $L \rightarrow j\omega L$ (i)=7. (as (wt-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C \rightarrow -i \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $= V \cos \omega t \cdot \overline{t} \cosh(\omega t - \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $U(t) \rightarrow V = \frac{VM}{\sqrt{2}} \frac{U}{\sqrt{2}} \frac{U}{2$                                                                                                                                                         |
| $T = \frac{I_{m}}{P} \left( \frac{\partial u}{\partial u} \right)^{-1} \sqrt{\frac{\partial u}{\partial u}} \sqrt{\frac{\partial u}{\partial u}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $U(k) = 1 - \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} Cos(N-cosp=\frac{1}{2}cos(N-p)+\frac{1}{2}cos(N+p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $P(t) \longrightarrow ? [I] = V_m I_m S_{C} a_{S} A + c_{S} (2mI - \theta) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \eta f(t) \dot{a}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $= \cos \frac{\beta}{2} + \sin \frac{\beta}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I= LANSA LAL - VM IM S COLOR T POR A Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arene $p(t)$ $V = V_{VMS} = \sqrt{2}$ $\frac{1}{2} \left[ \cos \theta + \cos \theta + \cos \theta + \sin \theta + \sin \theta \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathbf{p}(t)) = \frac{V_{m} \mathbf{I}_{m}}{\cos \theta} \cdot \cos \theta \cdot \cos 2wt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $P(x) = P = \frac{1}{2} \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $= \frac{V_m}{2} \cdot \frac{T_m}{2} \cos \theta = V I \cos \theta [P] + \frac{1}{2} \cdot \frac{1}{2} \sin \theta \cdot \sin \theta = \frac{1}{2} \cdot $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $P = V I \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $P_{a} \downarrow P_{a} uv p r$ $\longrightarrow P_{a}$ $R_{a}$ $R_{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{1}{\left(\frac{1}{2}\right)^{1/2}}$ $\left(\frac{1}{\left(\frac{1}{2}\right)^{1/2}}\right)$ $\frac{1}{\left(\frac{1}{2}\right)^{1/2}}$ $\frac{1}{\left(\frac{1}{2}\right)^{1/2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(VISin\theta = Q)$ $(DIA = VICOS + VICOS $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Readive Power +VISIND. Sin2wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TV=VL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $p_{i} = p + p \cdot c_{i} = 1/0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\int \Theta = \Theta_{V} $                                                                                                                                                                                                                                                                                                                                                                  |
| $\theta = 0$ (150=1) $r$ from $\gamma$ $U(A)$ 12042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{Z} = R$ since $\partial$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $P(t) = VI + VI \cos 2\omega t = VI (1+\cos 2\omega t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $(\widehat{\partial} \Theta = 90^{\circ} \qquad \Theta = \Theta_{i} - \Theta_{i} = 90^{\circ} \qquad \Theta_{i} = -90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $Z = j \omega L  cost = 0 \qquad \overline{L} = I \ \underline{/} - 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

$$P(h) = 0 + 0 \cdot \cos 2\pi i + \sqrt{1 \cdot \sin 2\pi i} \sqrt{1 \cdot \frac{1}{1 \cdot \sin 2\pi i}} \sqrt{1 \cdot \frac{1}{1 \cdot \frac{1}$$

#### 1. Definitions

Instantaneous Power:  $p(t) = v(t) \cdot i(t) = P \cos \theta + P \cos 2wt - Q \sin 2wt$ Real Power:  $P = \frac{V_m I_m}{2} \cos \theta = V_{rms} I_{rms} \cos \theta$ Reactive Power:  $Q = \frac{V_m I_m}{2} \sin \theta = V_{rms} I_{rms} \sin \theta$ Complex Power:  $\overline{S} = P + jQ$  (\*note: see #3 for deeper discussion) Apparent Power:  $S = \sqrt{P^2 + Q^2}$ Power Factor Angle:  $\theta = \theta_v - \theta_i$  (phase angle difference between voltage and current)

### 2. Load Dependence of the Power

Pure R case:  $\theta = 0$ ,  $P = \frac{V_m I_m}{2}$ , Q = 0 therefore, "R <u>consumes</u> P only" Pure L case:  $\theta = 90^\circ$ , P = 0,  $Q = \frac{V_m I_m}{2}$ , therefore, "L <u>consumes</u> Q only" Pure C case:  $\theta = -90^\circ$ , P = 0,  $Q = -\frac{V_m I_m}{2}$ , therefore, "C <u>delivers</u> Q" toward the source!!!!!

### 3. Complex Power in Phasor

From  $\overline{S} = P + jQ$ ,  $\overline{S} = V_{rms}I_{rms}\cos\theta + jV_{rms}I_{rms}\sin\theta = V_{rms}I_{rms}(\cos\theta + j\sin\theta) = V_{rms}I_{rms}e^{j\theta}$ Since  $\theta = \theta_v - \theta_i$ 

 $\overline{S} = V_{rms} I_{rms} e^{j\theta} = V_{rms} I_{rms} \angle \theta = V_{rms} I_{rms} \angle (\theta_v - \theta_i) = V_{rms} I_{rms} \angle \theta_v \cdot \angle - \theta_i = V_{rms} \angle \theta_v \cdot I_{rms} \angle - \theta_i$ Therefore,  $\overline{S} = \overline{V_{rms}} \cdot \overline{I}^*_{rms}$ 

$$(Ex) \quad v(t) = 100\sqrt{2} \cos \omega t$$

$$i'(t) = 10\sqrt{2} \cos \omega t$$

$$0 \sqrt{2} \cos \omega t - 30^{2}$$

$$0 \sqrt{2} \sqrt{2} \cos \omega t - 30^{2}$$

$$0 \sqrt{2} \sqrt{2} \sqrt{2} \cos \omega t - 30^{2}$$

Let's expand the **complex Power S**. See an example circuit below for the discussion.



(1) From 
$$\overline{V}_{rms} = Z \cdot \overline{I}_{rms}$$
,  
 $\overline{S} = \overline{V}_{rms} \cdot \overline{I}^*_{rms} = \overline{Z}\overline{I}_{rms}\overline{I}^*_{rms} = \overline{Z}I_{rms}^2 = I_{rms}^2(R+jX) = R \cdot I_{rms}^2 + jX \cdot I_{rms}^2$   
In this case:  $P = R \cdot I_{rms}^2$  and  $Q = X \cdot I_{rms}^2$   
In other words, *P* relates only to *R*, and *Q*, only to *X*.

(2) Alternatively, from 
$$\overline{I}_{rms} = \frac{\overline{V}_{rms}}{\overline{Z}}$$
,  $\overline{S} = \overline{V}_{rms} \cdot [\frac{\overline{V}_{rms}}{\overline{Z}}]^* = \frac{V_{rms}^2}{\overline{Z}^*} = \frac{V_{rms}^2}{R - jX} = \frac{V_{rms}^2(R + jX)}{R^2 + X^2}$   
By expanding further,  $\overline{S} = \frac{V_{rms}^2(R + jX)}{R^2 + X^2} = \frac{V_{rms}^2(R + jX)}{Z^2} = \frac{V_{rms}^2R}{Z^2} + j\frac{V_{rms}^2X}{Z^2}$   
In this case:  $P = \frac{V_{rms}^2R}{Z^2}$  and  $Q = \frac{V_{rms}^2X}{Z^2}$   
In other words, again, *P* relates only to *R*, and *Q*, only to *X*.

### POWER FACTOR (pf)

#### 1. Definition

Power factor (pf) is defined by "cosine of the angle made by voltage and current." The angle,  $\theta$ , is defined by  $\theta_v - \theta_i$ , where  $\theta_v$  and  $\theta_i$  are phase angles of the voltage and the current, respectively. This definition indirectly says that the reference in phase domain is the voltage. (See the diagrams below)



"Leading pf" means that the current leads the voltage and therefore the pf angle  $\theta$  is negative, as shown in (b); "Lagging pf" means that the current lags the voltage and the pf angle  $\theta$  is positive as in (a).

#### 2. Alternative Definition

Let's expand the original definition of the pf to the complex power S. Complex power is defined:

$$S = \overline{VI}^* = V \angle \theta_v \cdot I \angle -\theta_i = VI \angle (\theta_v - \theta_i) = VI \angle \theta$$

Therefore the angle of the complex power is exactly same as the angle of V and I. In other words, if we know the complex power and present it on the complex plane, we get the power factor angle. Also, since S = P + jQ, power factor angle can also be found once we know P and Q. (See diagrams below) Or, we can draw the general place of a complex power, once we know power factor is leading or lagging. "leading" or "lagging" power factor determines the polarity of reactive power Q.



#### 3. Another Alternative Definition

Let's play a little bit more. This time we will involve load impedance Z. Since load voltage V and load current I determines the load impedance Z, i.e., Z=V/I, we can express the power factor with Z.

$$Z = \frac{\overline{V}}{\overline{I}} = \frac{V \angle \theta_v}{I \angle \theta_i} = \frac{V}{I} \angle (\theta_v - \theta_i) = \frac{V}{I} \angle \theta$$

Therefore, if we locate the load impedance Z, the angle made by the impedance is the power factor angle. Since the impedance is composed of resistance R and reactance X, Z = R + jX, we can relate these elements with power factor as shown below.



#### 4. Final Words

If you compare the phase diagram of S and Z, you may notice that they are places along the same line, either they are lagging or leading. In many problems of power factor calculation, you may want to apply any or all of the definitions presented here. In any power factor related problems, I recommend you draw phase diagram of S, Z, or V & I, before you jump to write your answer. Always careful with the words "leading" and "lagging."

Evaluate the sinusoidal steady-state current for the circuit shown in Fig. 1 by replacing the circuit by its sinusoidal steady state equivalent.



Use phasor techniques to find  $v_L(t)$  in the circuit below.



# EXAMPLE PROBLEMS

1. As shown below, a voltage source of  $250 \angle 0^{\circ}$  (rms) is supplying a load of 39+j26 via a line which has an impedance of 1+j4.

- (a) Find the phasor current and phasor voltage at the load,  $\bar{I}_L$  and  $\bar{V}_L$ , respectively.
- (b) Calculated power delivered to the load
- (c) Calculate (real) power loss in the line

(d) Calculated power supplied by the source



- 2. Three loads are connected in parallel across a 2400 V (rms) line, as shown below. Load 1 absorbs 18kW and 24 kVar. Load 2 absorbs 60kVA at 0.6 pf (leading). Load 3 absorbs 18kW at unity power factor.
  - (a) Find the impedance that is equivalent to the three parallel loads.
  - (b) Find the power factor of the equivalent load.



3. A factory has an electrical load of 1800kW at a lagging power factor of 0.6. An additional variable power factor load is to be added to the factory. The new load will add 600kW to the real power load of the factory. The power factor of the added load is to be adjusted so that the overall power factor of the factory (with the load and the new load) is 0.96 lagging. Assume that the rms voltage at the input to the factory is 4800V.

(a) What is the rms magnitude of the current into the factory BEFORE the new load is added to the factory?

- (a) Find the reactive power of the added load.
- (b) What is the power factor of the new load?
- (c) What is the rms magnitude of the current into the factory AFTER the new load is added to the factory?

### <u>Example –</u>

Example – In-phase condition

The circuit shown below is operating in the sinusoidal steady state. The inductor is adjusted until the current  $i_g$  is in-phase with the sinusoidal voltage  $v_g$ .

- (a) Specify the inductance (in Henry) if  $v_g=100 \cos 500t$  [V].
- (b) Find  $i_g$  when L has the value found in part (a).



# **3-phase system -- SUMMARY**

1. Balanced  $3-\phi$  system is characterized by:

- 3 voltages are with same magnitude and 120° phase shift
- 3 load impedances are same
- Therefore, the currents are balanced with same magnitude and 120° apart
- 2. There are two types of voltages and two types of currents:
  - Phase Voltage  $(V_{\phi})$ = "voltage across a phase impedance"
  - Line Voltage  $(V_l)$ = "voltage between a (phase) line and another (phase) line"
  - Phase Current  $(I_{\phi})$ = "current through a phase impedance"
  - Line Current (I<sub>l</sub>) = "current through a (phase) line"
- 3. Above definitions have different meaning at different load formation, Y or  $\Delta$

<u>*Y-load case:*</u> As shown below, the three phase impedances ( $Z_A$ ,  $Z_B$ ,  $Z_C$ ) form the letter "Y". In the figure, the line connecting 3-phase source to the Y-load is represented by a line impedance,  $Z_l$ .



 $V_{\phi}=V_{AN}, V_{BN}, \text{ and } V_{CN}$  (1)

i.e., phase voltage is same as the voltage between a (phase) line and the neutral (marked as "N") (2)
V<sub>l</sub>= V<sub>AB</sub>, V<sub>BC</sub>, and V<sub>CA</sub> (3)
I<sub>φ</sub> =I<sub>AN</sub>, I<sub>NN</sub>, and i<sub>CN</sub>
I<sub>l</sub> = I<sub>aA</sub>, I<sub>bB</sub>, and i<sub>cC</sub> (also, I<sub>AN</sub>=I<sub>aA</sub>,etc)
Conclusion of Y-load:

(i) I<sub>φ</sub>=I<sub>l</sub>
(ii) V<sub>φ</sub> ≠ V<sub>l</sub> (instead, V<sub>l</sub> = √3V<sub>φ</sub>∠30°)

 $\Delta$  Load Case: As shown below, the 3 phase loads (Z<sub>AB</sub>, Z<sub>BC</sub>, and Z<sub>CA</sub>) form a Delta shape. As in Y-load, the line connecting 3-phase source to the Y-load is represented by a line impedance, Z<sub>l</sub>. Note that there is no neutral point.



 $V_{\phi}=V_{AB}, V_{BC}, \text{ and } V_{CA}$  (4)  $V_{l}=V_{AB}, V_{BC}, \text{ and } V_{CA}$  (5)  $I_{\phi}=I_{AB}, I_{BC}, \text{ and } i_{CA}$  $I_{l}=I_{aA}, I_{bB}, \text{ and } i_{cC}$ 

Conclusion of  $\Delta$ -load:

(i) 
$$I_{\phi} \neq I_{l}$$
 (instead  $I_{l} = \sqrt{3}I_{\phi} \angle -30^{\circ}$ ) (ii)  $V_{\phi} = V_{l}$ 

#### 4. Single-Phase Equivalent Circuit

- In a balanced 3-phase system, voltage and current magnitudes are same.
- In a balanced 3-phase system, voltage and current are 120° apart from each other
- Therefore, once a phase value is known, the other two are also known
- **<u>NOTE</u>**: Single-phase equivalent circuit is formed so that a phase impedance is connected *between a phase (line) and the neutral*.

*Y-load case:* From the Y-load figure, let's delete two phases (B, and C), then the remaining circuit looks like below:



 $\Delta$ -Load Case: There is a slight problem here, since there is no neutral point. So we have to convert the load to Y-load equivalent. By the usual  $\Delta$ -Y Transformation, we could get the Y impedance, in terms of Delta-load, as  $Z_Y = \frac{Z_A}{3}$ . Then the single-phase circuit looks like this:



NOTE: The voltage across the impedance in this single-phase circuit is **not** the actual phase voltage across the impedance.  $V_{AB}$  is the actual voltage across a impedance. So we have to convert the voltage, after your calculation of  $V_{AN}$ , to  $V_{AB}$  for a delta-load phase voltage.

$$V_{\phi} = V_{AB} = \sqrt{3}V_{AN} \angle 30^{\circ} \text{ and}$$
$$I_{\phi} = I_{AB} = \frac{I_{aA}}{\sqrt{3}} \angle 30^{\circ}$$

# **3-phase example problems**

### EX#1.

A balanced three-phase Y-connected generator has a voltage of 120 V/ $\phi$ . A balanced 3-phase  $\Delta$ -load is fed from the source through a distribution line having an impedance of  $0.5 + j \ 1.4 \ \Omega/\phi$ . The load impedance is 118.5 + j 85.8  $\Omega/\phi$ . Use the a-phase voltage of the generator as the reference.

(a) construct 3-phase circuit

(b) construct a single-phase equivalent circuit

(c) calculate the line currents  $I_{aA}$ ,  $I_{bB}$ ,  $I_{cC}$ .

(d) calculate the phase voltages at the load.

(e) calculate the total complex power delivered to the load

(f) calculate what percentage of the real power at the sending end of the line is delivered to the load?

## EX#2.

A balanced 3-phase Y-load requires 480kW at a lagging power factor of 0.8. The load is fed from a line having an impedance of  $0.005+j0.025 \Omega/\phi$ . The line voltage at the terminals of the load is 600V.

- (a) construct 3-phase circuit
- (b) construct a single-phase equivalent circuit
- (c) magnitude of the line current
- (d) magnitude of the line voltage at the sending end of the line
- (e) power factor at the sending end of the line