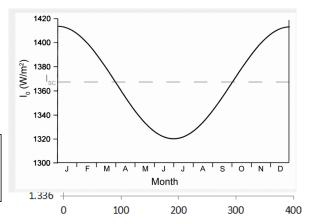
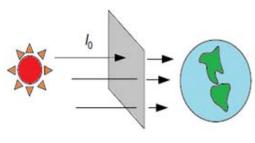

Solar Radiation


Source: esri.com


Clear Sky Beam Radiation

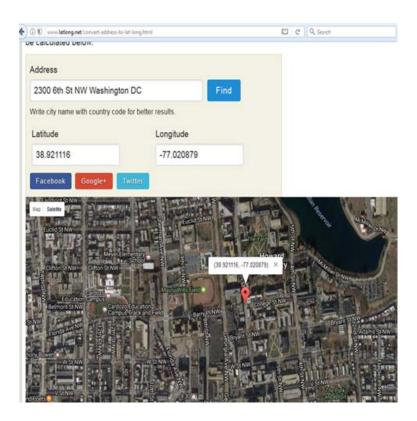
 \Re Extraterrestrial Solar Insolation (I_0)

$$I_0 = SC \cdot \left[1 + 0.034 \cos\left(\frac{360n}{365}\right)\right] \qquad (W/m^2)$$

$$1.377 \text{ kW/m^2}$$

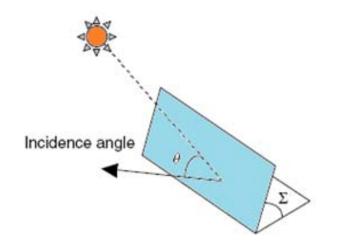
Portion of the beam reaching the earth <u>horizontal surface</u> $(I_{\rm B})$

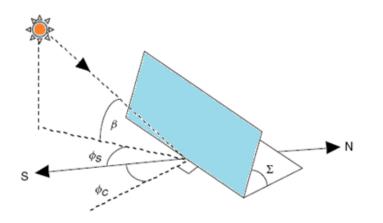
$$I_B = A e^{-km}$$


$$A = 1160 + 75 \sin\left[\frac{360}{365}(n - 275)\right] \qquad (W/m^2)$$

$$k = 0.174 + 0.035 \sin\left[\frac{360}{365}(n - 100)\right]$$

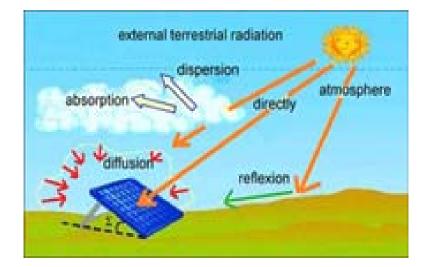
$$m = \frac{1}{\sin\beta}$$


Clear Sky Beam Radiation – Example


Question: Find the direct beam solar radiation on the <u>horizontal</u> <u>surface</u> at <u>solar noon</u> on a clear day on Howard University campus (latitude ???? degrees) on May 21.

January	n = 1	July	n = 182
February	n = 32	August	n = 213
March	n = 60	September	n = 244
April	n = 91	October	n = 274
May	n = 121	November	n = 305
June	n = 152	December	n = 335

Beam Radiation on Collector

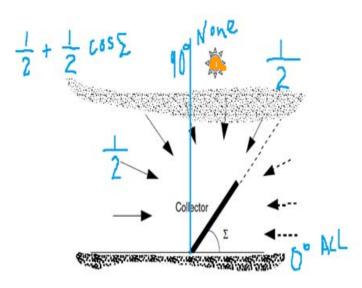

Beam Radiation on Collector - Example

Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the beam insolation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees.

$$\beta = \sin^{-1} \left\{ \cos L \cos \delta \cos H + \sin L \sin \delta \right\}$$
$$\phi = \sin^{-1} \left\{ \frac{\cos \delta \sin H}{\cos \beta} \right\}$$

January	n = 1	July	n = 182
February	n = 32	August	n = 213
March	n = 60	September	n = 244
April	n = 91	October	n = 274
May	n = 121	November	n = 305
June	n = 152	December	n = 335

Diffuse Radiation on Collector



\approx Diffuse insolation on a <u>Horizontal surface</u> I_{DH}

Sky diffuse factor (C)

$$C = 0.095 + 0.04 \sin \left[\frac{360}{365} (n - 100) \right]$$

Diffuse Radiation on collector I_{DC}

Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the diffuse radiation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees. Find the Diffuse Radiation (I_{DC})

$$H=0 \rightarrow q_{s}^{2}=0 \quad \text{sun's AZIMUM}$$

$$g_{c} = 20^{\circ} \quad \text{Collector's AZIMUM}$$

$$L= 33.7^{\circ} \quad May 1 \Rightarrow n = 141$$

$$\Sigma = 52^{\circ} \quad P_{N} = 76.4^{\circ}$$

Reflected Radiation on Collector

external terrestrial radiation dispension atmosphere absorptio directly <u>lexuân</u>

Reflection from ground with æ reflectance (snow, water, etc.)

ground reflectance ρ

$$I_{RC} = \rho I_B(\sin\beta + C) \left(\frac{1 - \cos\Sigma}{2}\right)$$

$$H=0 \rightarrow \phi_{s}=0 \quad \text{sun's Azimum}$$

$$\mathcal{G}_{c}=20^{\circ} \quad \text{Collector's Azimum}$$

$$L=33.7^{\circ} \quad May \ l \Rightarrow n=141$$

$$\Sigma=52^{\circ} \quad \rho_{rr}=76.4^{\circ}$$

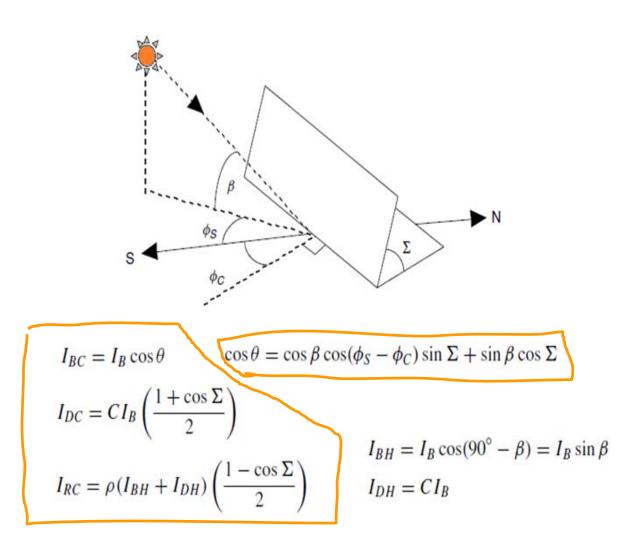
Question: At solar noon in Atlanta (latitude 33.7) on May 21, the altitude angle of the sun was found to be 76.4 degrees and the clear-sky beam insolation was found to be 902 W/m². Find the reflected radiation at that time on a collector that faces 20 degrees toward the southeast with tipped angle at 52 degrees, if the reflectance of the surfaces in front of the panel is 0.2.

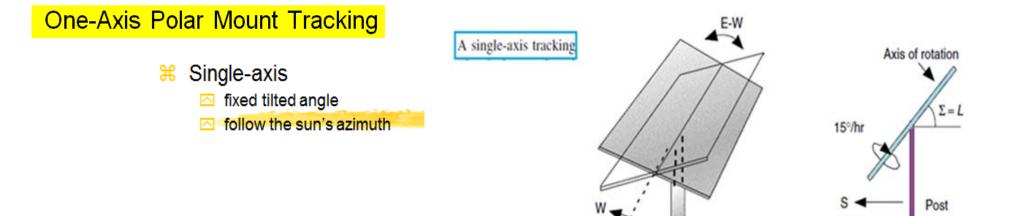
Total Radiation on Collector

$$\begin{split} I_C &= I_{BC} + I_{DC} + I_{RC} \\ I_C &= Ae^{-km} \left[\cos\beta\cos(\phi_S - \phi_C)\sin\Sigma + \sin\beta\cos\Sigma + C\left(\frac{1 + \cos\Sigma}{2}\right) \right. \\ &+ \rho(\sin\beta + C)\left(\frac{1 - \cos\Sigma}{2}\right) \right] \end{split}$$

 $\delta = 23.45^{\circ} \sin\left[\frac{360}{365}(n-81)\right]$

$$I_B = Ae^{-km}$$

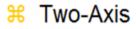

$$A = 1160 + 75 \sin\left[\frac{360}{365}(n - 275)\right] \quad (W/m^2)$$
$$k = 0.174 + 0.035 \sin\left[\frac{360}{365}(n - 100)\right]$$


$$\beta = \sin^{-1} \left\{ \cos L \cos \delta \cos H + \sin L \sin \delta \right\}$$
$$\phi = \sin^{-1} \left\{ \frac{\cos \delta \sin H}{\cos \beta} \right\}$$

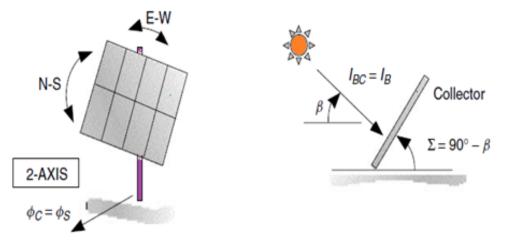
$$C = 0.095 + 0.04 \sin\left[\frac{360}{365}(n - 100)\right]$$

Collector Insolation:

- (a) fixed collector (no tracking)
- (b) single-axis tracking (follow the sun's azimuth)
- (c) two-axis tracking (follow sun''s altitude and azimuth)


$$I_{BC} = I_B \cos \delta$$
$$I_{DC} = CI_B \left[\frac{1 + \cos(90^\circ - \beta + \delta)}{2} \right]$$
$$I_{RC} = \rho (I_{BH} + I_{DH}) \left[\frac{1 - \cos(90^\circ - \beta + \delta)}{2} \right]$$

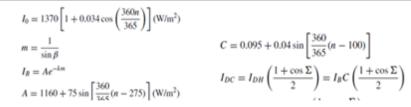
Polar mount


►E

Two-Axis Tracking

Two-Axis Tracking:

- Follow the sun's altitude
- Follow the sun's azimuth


$$I_{BC} = I_B$$

$$I_{DC} = CI_B \left[\frac{1 + \cos(90^\circ - \beta)}{2} \right]$$

$$I_{RC} = \rho (I_{BH} + I_{DH}) \left[\frac{1 - \cos(90^\circ - \beta)}{2} \right]$$

Clear Sky Insolation Equations – Handout & Homework

Summary of Clear-Sky Solar Insolation Equations

Homework

<u>Question 1</u>: Calculate the clear sky insolation on a fixed titled angle of 40° facing south collector located at 40° latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.

<u>Question 2</u>: Calculate the clear sky insolation on a single-axis polar mount collector located at 40°latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.

<u>Question 3</u>: Calculate the clear sky insolation on a two-axis tracking collector located at 40°latitude at (a) solar noon, (b) at 10:00am, and (c) 2:00pm on the summer solstice. Ignore the reflected insolation.