Electricity Generation Cost

Technology	Fuel	Capital Cost (\$/kW)	Heat Rate (Btu/kWh)	Fuel Cost (\$/million Btu)	Variable O&M (¢/kWh)
Pulverized coal steam	Coal	1400	9,700	1.50	0.43

Electricity Generation Cost Parameters

(1) Fixed cost: [\$/kW]

△ Annualized Fixed Cost (\$/kW-yr)

Electricity Generation Cost Parameters

(2) Variable cost: [\$/kWh]

☑ Annualized variable cost [\$/kW-yr]

Annualized Cost → Electricity Cost

- Annualized fixed cost (\$/kW-vr)
 - = Capital Cost (\$/kW) x FCR(/year)
- # Annualized variable cost (\$/kW-yr)
 - = {Material Cost [\$/kWh] + O&M (\$/kWh] }x Operating Hours [h/yr]
- **XEAUTION** Annualized Total Cost for N- kW plant
 - = N[kW]*{Annualized fixed cost [\$/kW-yr] + annualized variable cost [\$/kW-yr]} [\$/yr]
- Total Yearly Generation from N-kW Plant [kWh]
 - = N[kW]*H[hours/yr] [kWh/yr]
- # Electricity Cost [\$/kWh]
 - = Total Cost [\$/yr] /Total Generation [kWh/yr] [\$/kWh]

Electricity Energy Cost - Example

Technology	Fuel	Capital Cost (\$/kW)	Heat Rate (Btu/kWh)	Fuel Cost (\$/million Btu)	Variable O&M (¢/kWh)
Pulverized coal steam	Coal	1400	9,700	1.50	0.43
Advanced coal steam	Coal	1600	8,800	1.50	0.43

N := 1 1 kW-power	plant	
fuel_cost:=1.50.1	0 - 6	
heat_rate:= 9700		
material_cost:= fu	el_cost.heat_rate = 0.01455	\$/kWh
fcr:=0.16		
H:=8000 8000 ho u	urs operations from max 8760 hours	s per year
capital:=1400	OM := 0.0043	
Capital := 1400	017:=0.0043	

```
# Annualized fixed cost ($/kW-yr)
```

= Capital Cost (\$/kW) x FCR(/year)

$$afc := capital \cdot fcr = 224$$

Annualized variable cost (\$/kW-yr)

= {Material Cost [\$/kWh] + O&M (\$/kWh] }x Operating Hours [h/yr]

$$avc := (material_cost + OM) \cdot H = 150.8$$

Annualized Total Cost for N- kW plant

= N[kW]*{Annualized fixed cost [\$/kW-yr] + annualized variable cost [\$/kW-yr]} [\$/yr]

$$atc := N \cdot (afc + avc) = 374.8$$

**** Total Yearly Generation from N-kW Plant [kWh]**

= N[kW]*H[hours/yr] [kWh/yr]

$$aee := N \cdot H = 8000$$

Electricity Cost [\$/kWh]

= Total Cost [\$/yr] /Total Generation [kWh/yr] [\$/kWh]

$$EC := \frac{atc}{aee} = 0.04685$$
 \$/kWh
$$EC \cdot 100 = 4.685$$
 c /kWh

Investigation of the Example Costs

(1)

- Recall

 Recall
- # Annualized fixed cost [\$/kW-yr]
 - = Capital Cost [\$/kW] x FCR[/yr]
 - = 224 [\$/kW-yr]
- ★ Annualized variable cost (\$/kW-yr)
 - = {Material Cost [\$/kWh] + O&M (\$/kWh] }x Operating Hours [h/yr]
 - =150.8[\$/kW-yr]

$$avc = 150.8$$
 \$/ kW - yr
$$avcHour := \frac{avc}{8000} = 0.01885$$
 \$ / kWh

- Electricity Cost [\$/kWh]
 - =0.04685 [\$/kWh]
- ⊕ Operating hours = 8000

$$CF := \frac{H}{8760} = 0.913242$$

Capacitor Factor (CF):

"percentage usage of capacity"

Plant Operation and CF(Capacity Factor)

N = 1

XECOMPTE **Total Yearly Generation from N-kW Plant [kWh]

= N[kW]*H[hours/yr] [kWh/yr]

 $aee := N \cdot H = 8000$

= N [kW] x 8760 h/yr x CF (Capacity Factor)

 $gy := N.8760 \cdot CF = 8000$

$$CF = \left(\frac{8000}{8760}\right) = 0.913$$

Investigation of the Example Costs (2)

Differnt cost curves for different type of fuel

Generation Mix and Economic Dispatch

Different fuels are used for power generation

- Cost of fuel
- Operating cost
- Response time to the changing load

Generation Mix and Economic Dispatch

Dispatch:

Economic dispatch

Coal

Renewables

♯ Gas

Hydro

Nuclear

Roles of Different Power Plants

★ Baseload plants:

Intermediate load plants

Peak load plants

Screening Curves

Load-Duration Curves

1) Hourly Load Curve - 2 Load Duration Curve

We plan to connect the <u>screening curve of power plant</u> and the <u>load duration curve</u> for (a) <u>capacity</u> of different power plants and (b) <u>allocation of power plants</u> for economic dispatch

Optimum Mix through Screening Curve and Load-Duration Curve

- Determination of on <u>optimum</u>
 <u>mix</u> of power plants
- # Crossover Points for the first Cut Estimate of Generation Mix

